штабельного типа небольшой емкости с погрузочно-разгрузочными
механизмами (конвейеры, фронтальные погрузчики). При проектировании
необходимо предусмотреть бетонное основание или основание из
уплотненного грунта, водоотвод от штабелей, распределительные стенки
между штабелями, подачу материалов в штабеля и в агрегат питания
ленточными транспортерами.
4.2. Выбор и расчет ленточных конвейеров.
На АБЗ для непрерывной подачи минерального материала используют
ленточные и винтовые конвейеры. Ленточными конвейерами можно перемещать
песок и щебень в горизонтальном направлении и под углом не превышающим
22?. Выполняют ленточные конвейеры из нескольких слоев прорезиненной
хлопчатобумажной ткани. Ширина ленты В, м, определяется по часовой
производительности:
где Q — часовая производительность, т/ч;
v — скорость движения ленты, м/с;
? — плотность материала, т/м3.
Выбираем конвейер типа С-382А (Т-44).
4.3. Выбор типа бульдозера.
Таблица 2. Марка бульдозера и его характеристики.
|Тип и марка |Мощность|Отвал |
|машины |двигател| |
| |я, кВт | |
| | |Тип |Размеры, мм|Высота |Заглублени|
| | | | |подъема, |е, мм |
| | | | |мм | |
|ДЗ-24А (Д-521А)|132 |Неповоротны|3640х1480 |1200 |1000 |
| | |й | | | |
Производительность ПЭ, т/ч выбранного бульдозера:
где V — объем призмы волочения, V=0,5BH2=0,5?3,64?(1,48)2=3,987 м3,
здесь В — ширина отвала, м; Н — высота отвала, м;
kР — коэффициент разрыхления, kР = 1,05…1,35.
kПР — поправочный коэффициент к объему призмы волочения,
зависящий от соотношения ширины В и высоты Н отвала Н/В=0,41, а также
физико-механических свойств разрабатываемого грунта, kПР=0,77;
kВ — коэффициент использования машин по времени, kВ=0,8;
ТЦ — продолжительность цикла, с;
ТЦ=tН+tРХ+tХХ+tВСП,
здесь tН — время набора материала,
где LН — длина пути набора, LН=6…10 м;
v1 — скорость на первой передаче, v1=5…10 км/ч;
tРХ — время перемещения грунта, с,
где L — дальность транспортировки, м, L=20 м;
v2 — скорость на второй передаче, v2=6…12 км/ч;
tХХ — время холостого хода, с,
где v3 — скорость на третьей передаче, v3=7…15 км/ч;
tВСП = 20 с;> ТЦ = 3,84 + 7,2 + 9,16 + 20 = 40,2 с;
5. Битумохранилище.
5.1. Расчет размеров битумохранилища.
Для приема и хранения вяжущих устраивают ямные постоянные и
временные битумохранилища только закрытого типа. Битумохранилища
устраивают на прирельсовых АБЗ с битумоплавильными установками.
Современные закрытые битумохранилища ямного типа должны быть защищены
от доступа влаги как наружной, так и подземной путем устройства
специальных зданий, дренажей или навесов. Глубина ямного хранилища
допускается в пределах 1,5-4 м в зависимости от уровня грунтовых вод.
Для достижения рабочей температуры применяют электронагреватели.
Наиболее перспективный способ нагрева битума — разогрев в подвижных
слоях с использованием закрытых нагревателей. Для забора битума из
хранилища устраивают приемники с боку или в центре хранилища. Таким
образом, битумохранилище состоит из собственно хранилища, приямка и
оборудования для подогрева и передачи битума.
Значение запаса единовременного хранения битума округляем до 500,
тогда средняя площадь F, м2 битумохранилища:
где Е — емкость битумохранилища, м3;
h — высота слоя битума, h = 1,5…4 м.
Затем, исходя из значения строительного модуля, равного трем, и
отношения длины L к ширине В битумохранилища, равного L/B = 1,5,
назначаем средние значения длин Lср и Вср.
Ввиду того что стенки битумохранилища устраивают с откосом:
5.2. Количество тепла, необходимое для нагрева битума в хранилище и
приямке Q, кДж/ч.
где Q1 — количество тепла, затрачиваемое на плавление битума, кДж/ч.
где ? — скрытая теплота плавления битума, ?=126 кДж/кг;
G — количество подогреваемого битума, кг/ч, G = 0,1?Qсм, где Qсм
— производительность выбранного смесителя, кг/ч.
Q2 — количество тепла, затрачиваемое на подогрев битума, кДж/ч:
где K — коэффициент, учитывающий потери тепла через стенки хранилища
и зеркало битума, K = 1,1;
Сб — теплоемкость битума, Сб =1,47…1,66 кДж/(кг?єС);
W — содержание воды в битуме, W = 2…5%;
t1 и t2 —
для хранилища t1 = 10єС; t2 = 60єС;
для приемника t1 = 60єС; t2 = 90єС.
Битумоплавильные агрегаты предназначены для плавления, обезвоживания
и нагрева битума до рабочей температуры. Разогрев битума в
битумохранилище производится в два этапа:
I этап: Разогрев битума донными нагревателями, уложенными на дне
хранилища до температуры текучести (60єС), дно имеет уклон, битум
стекает в приямок в котором установлен змеевик.
II этап: Разогрев битума в приямке до температуры 90єС. Нагретый
битум с помощью насоса перекачивается по трубопроводам в
битумоплавильные котлы.
5.3. Расчет электрической системы подогрева.
Потребляемая мощность Р, кВт:
В каждом блоке по шесть нагревателей. Мощность одного блока:
где n
— количество блоков нагревателей, n = 3…4 шт.
Принимаем материал в спирали нагревателя полосовую сталь с ?=0,12?10-
6 Ом?м. Сечение спирали S=10?10-6 м2.
Мощность фазы, кВт:
Сопротивление фазы, Ом:
где U=380 В.
Длина спирали, м:
Величина тока, А:
Плотность тока, А/мм2:
6. Определение количества битумоплавильных установок.
1 Часовая производительность котла ПК, м3/ч.
где n — количество смен;
kВ — 0,75…0,8;
VК — геометрическая емкость котла для выбранного типа агрегата,
м3;
kН — коэффициент наполнения котла, kН=0,75…0,8;
tЗ — время заполнения котла, мин:
где ПН — производительность насоса (см. таблицу 3).
Таблица 3. Тип насоса и его характеристики.
|Тип насоса|Марка |Производит|Давление, |Мощность |Диаметр |
| |насоса |ельность, |кгс/см2 |двигателя, |патрубков, мм|
| | |л/мин. | |кВт | |
|передвижно|ДС-55-1 |550 |6 |10 |100/75 |
|й | | | | | |
tН=270 мин — время выпаривания и нагрев битума до рабочей
температуры;
tВ — время выгрузки битума, мин:
где ? — объемная масса битума, ?=1т/м3;
Q — часовая производительность смесителя, т/ч;
? — процентное содержание битума в смеси.
2 Расчет количества котлов.
где ПБ — суточная потребность в битуме, т/сутки;
kП — коэффициент неравномерности потребления битума, kП=1,2.
Выбираем тип агрегата:
Таблица 4. Тип агрегата и его характеристики.
|Тип |Рабочий |Установленная мощность,|Расход |Производи|
|агрегата|объем, л |кВт |топлива, |-тельност|
| | | |кг/ч |ь, т/ч |
| | |э/дв. |э/нагр. | | |
|ДС-91 |30000?3 |35,9 |90 |102,5 |16,5 |
Расчет склада и оборудования для подачи минерального порошка.
Для подачи минерального порошка используют два вида подачи:
механическую и пневмотранспортную. Для механической подачи минерального
порошка до расходной емкости применяют шнеко-элеваторную подачу.
Применение пневмотранспорта позволяет значительно увеличить
производительность труда, сохранность материала, дает возможность
подавать минеральный порошок, как по горизонтали, так и по вертикали.
Недостаток — большая энергоемкость. Пневматическое транспортирование
заключается в непосредственном воздействии сжатого воздуха на
перемещаемый материал. По способу работы пневмотранспортное
оборудование делится на всасывающее, нагнетательное и всасывающе-
нагнетательное. В общем случае пневмотранспортная установка включает
компрессор с масло- и влагоотделителем, воздухопроводы, контрольно-
измерительные приборы, загрузочные устройства подающие материал к
установке, разгрузочные устройства и системы фильтров. Для
транспортирования минерального порошка пневмоспособом используют
пневмовинтовые и пневмокамерные насосы. Пневмовинтовые насосы
используют для транспортирования минерального порошка на расстояние до
400 м. Недостаток — низкий срок службы быстроходных напорных шнеков.
Камерные насосы перемещают минеральный порошок на расстояние до 1000 м.
Могут применяться в комплекте с силосными складами. Включают в себя
несколько герметично закрытых камер, в верхней части которой имеется
загрузочное отверстие с устройством для его герметизации. В состав
линии подачи входит склад, оборудование, обеспечивающее перемещение
минерального порошка от склада до расходной емкости и расходная
емкость.
1 Расчет вместимости силоса в склад.
Рекомендуется хранить минеральный порошок в складах силосного типа с
целью избежания дополнительного увлажнения, которое приводит к
комкованию и снижению его качества, а также к затруднению
транспортирования. Потребная суммарная вместимость силосов склада SVс,
м3 составляет:
где GП — масса минерального порошка;
?П — плотность минерального порошка, ?П=1,8 т/м3;
kП — коэффициент учета геометрической емкости, kП=1,1…1,15.
Количество силосов рассчитывается по формуле:
где VC — вместимость одного силоса, м3; V=20, 30, 60, 120.
2 Расчет пневмотранспортной системы.
Для транспортирования минерального порошка до расходной емкости
принимается механическая или пневматическая система.
Для транспортирования минерального порошка можно использовать
пневмовинтовые или пневмокамерные насосы. Подача в пневмотранспортную
установку сжатого воздуха осуществляется компрессором. Потребная
производительность компрессора QК, м3/мин, составляет:
Страницы: 1, 2, 3