Практическое задание №1
Проектирование приточной и вытяжной механической вентиляции
Вариант № 16
Задание: Рассчитать механическую вытяжную вентиляцию для помещения, в
котором выделяется пыль или газ и наблюдается избыточное явное тепло.
Исходные данные: Количество выделяющихся вредностей: mвр.= 1,2 кг/час
пыли, Qяизб.= 26 кВт. Параметры помещения: 9(26(6 м. Температура воздуха:
tп.= 21 (С, tу.= 24 (С. Допустимая концентрация пыли Сд.=50 мг/м2. Число
работающих: 80 человека в смену. Схема размещения воздуховода приведена на
рис.3.1. Подобрать необходимый вентилятор, тип и мощность электродвигателя
и указать основные конструктивные решения.
Рис 3.1. Схема воздуховодов
вытяжной вентиляции.
Расчет: [pic]
LП – потребное количество воздуха для помещения, м3/ч;
LСГ - потребное количество воздуха исходя из обеспечения в данном
помещение санитарно-гигиенических норм, м3/ч;
LП – тоже исходя из норм взрывопожарной безопасности, м3/ч.
Расчет значения LСГ ведут по избыткам явной или полной теплоте, массе
выделяющихся вредных веществ, избыткам влаги (водяного пара), нормируемой
кратности воздухообмена и нормируемому удельному расходу приточного
воздуха. При этом значения LСГ определяют отдельно для теплого и холодного
периода года при плотности приточного и удаляемого воздуха ( = 1,2 кг/м3
(температура 20 (С).
При наличии в помещении явной теплоты [pic] в помещении потребный
расход определяют по формуле:
[pic]
где ty и tп – температуры удалённого и поступающего в помещение
воздуха
При наличии выделяющихся вредных веществ (пар, газ, пыль твр мг/ч)
в помещении потребный расход определяют по формуле:
где Сд –концентрация конкретного вредного вещества, удаляемого
из помещения, мг/м3
Сп –концентрация вредного вещества в приточном воздухе, мг/м3
[pic] в рабочей зоне
Расход воздуха для обеспечения норм взрывопожарной безопасности ведут
по массе выделяющихся вредных веществ в данном помещении, способных к
взрыву
где Снк = 60 г/м3 – нижний концентрационный предел распространения
пламени по пылевоздушным смесям.
Найденное значение уточняют по минимальному расходу наружного воздуха:
Lmin=n ( m ( z = 80 ( 25 ( 1,3 = 2600 м3/ч
где m = 25 м3/ч–норма воздуха на одного работника,
z =1,3 –коэффициент запаса.
n = 80 – число работников
Окончательно LМ = 34286 м3/ч
Аэродинамический расчет ведут при заданных для каждого участка вентсети
значений их длин L, м, и расходов воздуха L, м3/ч. Для этого определяют:
1. Количество вытяжного воздуха по магистральным и другим воздуховодам;
2. Суммарное значение коэффициентов местных сопротивлений по i-участкам
по формуле:
(пов – коэффициент местного сопротивления поворота (табл. 6 [2]);
((ВТ = (ВТ ( n – суммарный коэффициент местного сопротивления
вытяжных тройников;
(СП – коэффициент местного сопротивления при сопряжении потоков под
острым углом, (СП = 0,4.
В соответствии с построенной схемой воздуховодов определяем
коэффициент местных сопротивлений. Всасывающая часть воздуховода объединяет
четыре отсоса и после вентилятора воздух нагнетается по двум направлениям.
На участках а, 1, 2 и 3 давление теряется на входе в двух (четырех)
отводах и в тройнике. Коэффициент местного сопротивления на входе зависит
от выбранной конструкции конического коллектора. Последний устанавливается
под углом ( = 30( и при соотношении l/d0 = 0,05, тогда по справочным данным
коэффициент равен 0,8. Два одинаковых круглых отвода запроектированы под
углом ( = 90( и с радиусом закругления R0/dэ =2.
Для них по табл. 14.11 [3] коэффициент местного сопротивления (0 =
0,15.
Потерю давления в штанообразном тройнике с углом ответления в 15(
ввиду малости (кроме участка 2) не учитываем. Таким образом, суммарный
коэффициент местных сопротивлений на участках а,1,2,3
(( = 0,8 + 2 ( 0,15 = 1,1
На участках б и в местные потери сопротивления только в тройнике,
которые ввиду малости (0,01…0,003) не учитываем. На участке г потери
давления в переходном патрубке от вентилятора ориентировочно оценивают
коэффициентом местного сопротивления (г = 0,1. На участке д расположено
выпускная шахта, коэффициент местного сопротивления зависит от выбранной её
конструкции. Поэтому выбираем тип шахты с плоским экраном и его
относительным удлинением 0,33 (табл. 1-28 [2]), а коэффициент местного
сопротивления составляет 2,4. Так как потерей давления в тройнике
пренебрегаем, то на участке д (включая и ПУ) получим (д = 2,4. На участке 4
давление теряется на свободный выход (( = 1,1 по табл. 14-11 [3]) и в
отводе (( = 0,15 по табл. 14-11 [3]). Кроме того, следует ориентировочно
предусмотреть потерю давления на ответвление в тройнике (( = 0,15), так как
здесь может быть существенный перепад скоростей. Тогда суммарный
коэффициент местных сопротивлений на участке 4
((4 = 1,1 + 0,15 + 0,15 = 1,4
Определение диаметров воздуховодов из уравнения расхода воздуха:
Вычисленные диаметры округляются до ближайших стандартных диаметров по
приложению 1 книги [3]. По полученным значениям диаметров пересчитывается
скорость.
По вспомогательной таблице из приложения 1 книги [3] определяются
динамическое давление и приведенный коэффициент сопротивления трения.
Подсчитываются потери давления:
Для упрощения вычислений составлена таблица с результатами:
|N |L, |(( |L1, |d, |V, |[pi|[pic]|[pic]|[pic]|Р, |РI, |[pi|
|учас|м | |м3/ч |мм |м/с |c] | | | |Па |Па |c]Р|
|тка | | | | | |Па | | | | | |, |
| | | | | | | | | | | | |Па |
|а |7 |1.1|8572 |400|19 |216|0.04 |0.28 |1.38 |298 |298 |( |
|б |8 |( |17143 |560|19.4|226|0.025|0.2 |0.2 |45.2|343 |( |
|в |3,5|( |34286 |800|19 |216|0.015|0.053|0.053|11.4|354.4|( |
|г |3,5|0.1|34286 |800|19 |216|0.015|0.053|0.153|33 |387 |( |
|д |6 |2.4|25715 |675|23 |317|0.02 |0.12 |2.52 |799 |1186 |( |
|1 |7 |1.1|8572 |400|19 |216|0.04 |0.28 |1.38 |298 |298 |( |
|2 |7 |1.1|8572 |400|19 |216|0.04 |0.28 |1.38 |298 |343 |45 |
|3 |7 |1.1|8572 |400|19 |216|0.04 |0.28 |1.38 |298 |343 |45 |
|4 |4 |1.4|8572 |400|19 |216|0.04 |0.16 |1.56 |337 |799 |462|
Как видно из таблицы, на участке 4 получилась недопустимая невязка в 462
Па (57%).
Как видно из таблицы, на участке 2, 3 получилась недопустимая невязка в
45 Па (13%).
Для участка 4: уменьшаем d с 400 мм до 250 мм, тогда
[pic]м/с,
при этом [pic]=418 Па и [pic]= 0.08, Р = 780 Па, (Р = 80 Па, ( [pic].
Для участка 2 и 3: уменьшаем d с 400 мм до 250 мм, тогда V = 10 м/с,
при этом [pic]= 226 Па и [pic]= 0.25, Р = 305 Па, (Р = 80 Па, ( [pic].
Выбор вентилятора.
Из приложения 1 книги [3] по значениям Lпотр = 34286 м3/ч и РI
= 1186 Па выбран вентилятор Ц-4-76 №12.5 Qв – 35000 м3/ч, Мв –
1400 Па, (в = 0,84, (п = 1. Отсюда установленная мощность электродвигателя
составляет:
где Qв – принятая производительность вентилятора, Nв – принятый напор
вентилятора, (в=( - кпд вентилятора, (п – кпд передачи.
Из приложения 5 книги [3] по значениям N = 75 кВт и
( = 1000 об/мин выбран электродвигатель АО2-92-6 (АО» – защитное
исполнение, 92 – размер наружного диаметра, 6 – число полюсов). Схема
электродвигателя показана на рис.3.2.
Рис. 3.2. Схема электродвигателя А02-92-6
При этом необходимо предусмотреть установку реверсивных магнитных
пускателей для реверсирования воздуха при соответствующих аварийных
ситуациях в данном помещении.
Вентилятор и электродвигатель устанавливаются на железной раме при их
одноосном расположении. Для виброизоляции рама устанавливается на
виброизолирующие материал. На воздухоотводе устанавливают диафрагму, а
между ними и вентилятором переходник.
Список использованной литературы:
1. Бережной С.А., Романов В.В., Седов Ю.И. Безопасность жизнедеятельности:
Учебное пособие. – Тверь: ТГТУ, 1996.
2. Практикум по безопасности жизнедеятельности:/С.А.Бережной, Ю.И.Седов,
Н.С.Любимова и др.; Под ред С.А.Бережного. – Тверь: ТГТУ, 1997.
3. Калинуткин М.П. Вентиляторные установки, Высшая школа, 1979.
-----------------------
lд=6м
ПУ
l4=4м
l3=7м
l1=7м
lг=2м
lв=3,5м
lб=8м
la=7м
l2=7м