ПРОМЕЖУТОЧНЫЕ ФИЛАМЕНТЫ
Это полимеры, состоящие из одного или двух фибриллярных полипептидов, которые различаются в клетках разного типа и кодируются семейством мультигенов. Примером являются кератины из эпителиальных клеток и виментин из клеток мезенхимы.
Функции промежуточных филаментов неизвестны. Мало что можно сказать и о биохимической основе их взаимодействия с мембранами.
МИКРОТРУБОЧКИ
Они состоят из тубулина, который хорошо охарактеризован и представляет собой а/?-гетеродимерный белок. Микротрубочки образуют цитоплазматическую сеть, которая, как полагают, связывает плазматическую мембрану с органеллами, например с митохондриями. Вдоль микротрубочек, по-видимому, происходит перемещение эндосом и лизосом. Есть доказательства, что тубулин прикрепляется к мембранам в особых точках. Выделен мембранный белок синапсин I, который, по-видимому, взаимодействует с тубулином. В ходе митоза цитоплазматическая сеть микротрубочек распадается и перестраивается в митотическое веретено. Микротрубочки разрушаются под действием колхицина.
МЕМБРАНА И ЦИТОСКЕЛЕТ ЭРИТРОЦИТОВ
Наиболее детально изучены мембрана и цитоскелет эритроцитов млекопитающих. В табл. 4.2 перечислены основные белки, которые были разделены с помощью ДСН-ПААГ-электрофореза. Цифровые обозначения полипептидов связаны с их относительной электрофоретической подвижностью в геле. При промывании мембраны растворами с низкой ионной силой удаляются периферические мембранные белки, к которым прежде всего относятся компоненты цитоскелета. Основными интегральными белками цитоскелета являются белок полосы 3 и гликофорины А, В и С. Белок полосы 3 представляет собой анионный переносчик, а функции гли-кофоринов, относящихся к классу гликопротеинов, неизвестны. В электронном микроскопе цитоскелет выглядит как упорядоченная сеть на внутренней стороне мембраны. Как видно из табл. 4.2, белки цитоскелета являются основными мембранными компонентами, и это облегчает их биохимическую характеристику. По сути белковый каркас состоит из спектрин-актинового комплекса, который связан с плазматической мембраной благодаря взаимодействиям как с белком полосы 3, так и с гликофорином; эти взаимодействия осуществляются с помощью специальных белков -- ан-
Таблица 2. Свойства, степень ассоциации и функции эритроцитарных мембранных белков
кирина и белка полосы 4.1. Основные компоненты были очищены до гомогенного состояния и изучены in vitro. Комплексы между основными белками, такими, как белок полосы 3 и анкирин или анкирин и спектрин, характеризуются константами диссоциации порядка Ю-7 М, которые могут меняться в физиологических условиях. Фосфорилирование анкирина влияет на его аффинность по отношению к спектрину, а взаимодействие между белком полосы 4.1 и гликофорином, по-видимому, модулируется фосфатидилинози-толами.
Интересно, что белки, близкородственные компонентам цитоскелета эритроцитов, обнаружены в ряде неэритроидных клеток. Большой интерес к цитоскелету эритроцитов, по всей вероятности, обусловлен тем, что данная система не является уникальной лишь для этих клеток, а представлена в виде кортикального цитоскелета и в клетках другого типа. Рассмотрим свойства некоторых цитоскелет-иых белков.
1. Спектрин. Это тетрамер типа г, в котором два гетероди-мера a/J объединены по схеме «конец-к-концу». Молекула может достигать в длину 2000 А. Спектрин связан с анкирииом и белком полосы 3 по сайтам, расположенным на противоположных концах молекулы. Кроме того, спектрин связан с актином, возможно, в комплексе с белком полосы 4.1. Спектринопо-
добные молекулы, например фодрин, обнаружены в клетках разного типа.
Актин. Это глобулярный белок, который существует в виде линейных олигомеров, содержащих по 12--18 молекул. Они выглядят на электронных микрофотографиях как короткие стержни, к которым может быть прикреплено до шести спектриновых тетрамеров.
Анкирин. Это наиболее охарактеризованный растворимый белок, обеспечивающий взаимодействия между интегральными мембранными белками и цитоскелетом. Он имеет отдельные домены, ответственные за независимое связывание со спектрином и с цитоп-лазматическим доменом белка полосы 3. Анкирин был обнаружен и в неэритроидных клетках.
Белок полосы 4.1. Он также относится к классу белков, обеспечивающих связь цитоскелета с мембраной. Белок полосы 4.1 связывается со спектрином и актином, а также с гликофорином. Кроме того, при определенных условиях он может связываться и с белком полосы 3. Белку полосы 4.1, по-видимому, родствен синапсин I, обнаруженный в мембране синаптических везикул.
5. Белок полосы 3. Это основной анионный переносчик в эритроцитах. Цитоплазматический домен содержит на N-конце кислый участок, который связывается с некоторыми гликоли-тическими ферментами, а также с гемоглобином. Цитоплазматический домен не участвует в транспорте анионов. Его сегмент, расположенный вблизи мембраны, связывается с анкири-ном и с белком полосы 4.2. На основании анализа аминокислотной последовательности было высказано предположение, что белок полосы 3 имеет 12 трансмембранных сегментов, но полученные к настоящему времени экспериментальные данные не позволяют ни подтвердить, ни опровергнуть это положение.
6. Гликофорин А. Это основной сиалосодержащий гликопротеин; В отличие от белка полосы 3 он имеет относительно небольшой цитоплазматический домен и один трансмембранный сегмент. Полагают, что этот белок связывается с белком полосы 4.1. Другие его функции неизвестны.
Трансмембранная асимметрия липидов
Мембранные белки, находясь в плоскости бислоя, не меняют Свою топологическую ориентацию. Они встраиваются в мембрану в jCTporo определенной ориентации и остаются в таком положении в течение всего времени их жизни. Липиды ш ряде биологических мембран, напротив, с довольно большой частотой мигрируют с одной стороны мембраны на другую. Определить скорость трансмембранной миграции липидов очень важно по двум причинам: это помогает понять Природу липидной асимметрии и позволяет критически оценить пригодность методов, используемых для нахождения распределения липидов между двумя сторонами бислоя. Чтобы измерения содержа-1кия, например, фосфатидилсерина на наружной стороне мембранных везикул были достоверными, они должны быть завершены до того, как фосфатидилсерин из внутреннего монослоя переместится в наружный. Некоторые методы установления липидной асимметрии модифицируют саму изучаемую систему и индуцируют трансмембранную миграцию липидных молекул, поэтому полученные результаты бывает трудно интерпретировать. Детальная оценка достоинств и недостатков методов изучения липидной асимметрии в мембранах дается, например, в обзорах.
МЕТОДЫ УСТАНОВЛЕНИЯ ТРАНСМЕМБРАННОГО РАСПРЕДЕЛЕНИЯ ЛИПИДОВ
Химическая модификация фосфолипидов
Относительно легко подвергаются химической модификации только аминофосфолипиды, например фосфатидилсерин и фосфати-дилэтаноламин. При этом мембранный препарат с известной топологической ориентацией обрабатывают реагентом, который не проникает через бислой и ковалентно связывается со свободными аминогруппами тех аминофосфолипидов, которые находятся только на наружной поверхности мембраны. Чаще всего с этой целью используют ТНБС. Доля фосфатидилэтаноламина, вступившего в реакцию, должна служить мерой его содержания на наружной стороне мембраны. Очевидно, однако, что такой вывод неправомочен, если реакция не доходит до конца или если в ходе реакции значительное количество фосфатидилэтаноламина перемещается с внутренней стороны мембраны на наружную и становится доступным для реагента. Как правило, в реальной ситуации имеют место оба обстоятельства, что значительно осложняет интерпретацию результатов.
Предложен вариант этого подхода, предусматривающий синтез аналогов фосфолипидов с реакционноспособными сульфгидрильны-ми группами с последующим использованием непроникающих реагентов, избирательно реагирующих по SH-группам. Естественно, что эти липидные аналоги следует включать в изучаемые мембраны перед обработкой реагентами, и желательно предварительно исследовать их поведение в модельных системах.
Фосфолипидный обмен
Спонтанный обмен фосфолипидами между мембранами, как правило, протекает с пренебрежимо малой скоростью. Однако были выделены белки, называемые липидпереносящими белками, которые катализируют обмен. Эти белки чаще всего выделяют из тканей млекопитающих. Наиболее изучен белок из печени крысы, который обладает абсолютной специфичностью по отношению к фосфатидилхолину и катализирует его обмен между мембранами. Большинство других липидперенося-щих белков менее специфичны к полярным головкам липидных молекул. Это растворимые белки, которые имеют высокоаффинные места связывания фосфолипидных молекул. Механизм обмена неизвестен, однако ЛПБ можно использовать для изучения липидной асимметрии, поскольку они связывают липиды только наружной поверхности бислоя, с которыми они контактируют. Обычно мембранные везикулы инкубируют с избытком липосом, содержащих радиоактивно меченный фосфолипид, в присутствии липидперенося-щего белка. Фосфолипидный обмен со стехиометрией 1:1, который катализируется указанными белками, не приводит к изменению состава мембран, при этом степень обмениваемости фосфолипидов можно определить, измерив удельную радиоактивность мембраны. Если фосфолипид в мембране полностью доступен для обмена, то его удельная радиоактивность в липосомах и мембранах в конце эксперимента будет одинаковой. Если же изучаемый липид на внутренней стороне мембраны недоступен для обмена, то его удельная радиоактивность в мембране будет ниже, чем в липосомах. Если трансмембранная миграция протекает медленнее, чем устанавливается равновесие при обмене, то удельная радиоактивность будет возрастать во времени, и это возрастание будет отражать скорость флип-флопа. При проведении этих экспериментов необходимо отделять липосомы от изучаемых мембран; для этого обычно используют центрифугирование.
Достоинство этой методики состоит в том, что ЛПБ не проникают через мембрану, недостаток же связан с тем, что равновесие устанавливается медленно, за несколько часов или даже больше. Поэтому данная методика неприменима, когда происходит быстрая трансмембранная миграция, но ее можно использовать в сочетании с другими методами. Например, можно провести обмен радиоактивных липидов, находящихся на наружной поверхности бислоя, а затем использовать фосфолипазы для оценки скорости, с которой эти липи-ды мигрируют с наружной стороны мембраны на внутреннюю.
Фосфолипазы
Фосфолипазы -- это ферменты, гидролизующие фосфолипиды по связям, указанным на рис. 4.3. Фосфолипазы представляют собой
растворимые белки, которые взаимодействуют только с наружной поверхностью бислоя и поэтому являются ценным инструментом для изучения асимметрии фосфолипидов и скорости их трансмембранной миграции. При работе с фосфолипазами следует иметь в виду два момента: 1) не все фосфолипиды на наружной стороне мембраны легко вступают в реакцию; 2) продукты реакции обычно дестабилизируют бислой. Даже если при действии фосфолипаз целостность бислоя не нарушается, скорость трансмембранной миграции фосфолипидов может существенно возрасти. Поэтому ход реакции необходимо тщательно контролировать, а выводы, сделанные на основании полученных результатов, -- критически анализировать.
Страницы: 1, 2, 3, 4