Рефераты. Біологія та екологія бактеріофагів

рансляція. Процес переведення генетичної інформації, яка міститься в іРНК, у специфічну послідовність амінокислот у молекулі білка називається трансляцією. Саме в результаті трансляції іРНК відбувається синтез білка в клітині. Він здійснюється на рибосомі, яка складається з двох субодиниць -- великої і малої. Субодиниці містять рибосомальні РНК і білки.

У клітині завжди є РНК, які транспортують в рибосоми амінокислоти, їх називають транспортними (тРНК). Кожна амінокислота переноситься відповідною тРНК. Три нуклеотиди на іРНК, що кодують одну амінокислоту, називаються триплетом або «кодоном». На кінці тРНК є три нуклеотиди, комплементарні кодону, -- це «антикодон». Останній відповідає за прикріплення до певного місця іРНК (кодону). Тільки після утворення на рибосомі потрійного комплексу: ІРНК -- тРНК -- АК може початися процес трансляції.

Трансляція перебігає у три фази: ініціація, елонгація і термінація.

Ініціація -- найважливіший етап в процесі трансляції. Він ґрунтується на пізнанні рибосомою іРНК і зв'язуванні з її особливими ділянками. Рибосома «упізнає» іРНК завдяки «шапочці» на 5'-кінці і сковзує до 3'-кодону, доки не досягне ініціаторного кодону, з якого починається трансляція. В еукаріотній клітині ініціаторним кодоном є кодон АУГ або ГУГ, що кодують амінокислоту метіонін. З цієї ініціаторної амінокислоти починається синтез поліпептидного ланцюга. Він відбувається внаслідок приєднання залишків амінокислот через утворення між ними пептидних зв'язків і називається елонгацією. При цьому ланцюг іРНК протягується через рибосому і закодована у ній генетична інформація «декодується». ІРНК функціонує на декількох рибосомах, кожна з яких синтезує той самий поліпептидний ланцюг, який кодується даною ІРНК.

Термінація (закінчення) трансляції здійснюється тоді, коли рибосома доходить до термінуючого кодону в складі ІРНК. У цей момент синтез поліпептидного ланцюга (білкової молекули) закінчується і він звільняється від полірибосоми. Після цього полірибосоми розпадаються на субодиниці. Останні можуть входити до складу нових полірибосом.

Реплікація (від лат. replicatio -- подвоєння) -- синтез молекул нуклеїнової кислоти, які гомологічні геному. Реплікація геному ДНК-вмісних вірусів каталізується переважно клітинними ферментами; її механізм подібний до реплікації клітинної ДНК. Кожна синтезована молекула ДНК складається з однієї батьківської і однієї заново синтезованої дочірньої нитки. Це так званий напівконсервативний механізм реплікації.

Реплікація одноланцюгових ДНК (у парвовірусів) проходить з утворенням дволанцюгових проміжних реплікативних форм. Останні реплікуються за класичним напівконсервативним механізмом. Найкраще вивченим з цієї групи вірусів є фаг фх 174.

У вірусів, які містять кільцеві дволанцюгові ДНК (паповавіруси), розрізується один із ланцюгів ДНК, що приводить до розкручування супервитків на певній ділянці молекули.

Реплікація вірусних РНК відбувається в клітині за допомогою вірусоспецифічних ферментів. Реплікацію каталізує той самий фермент, що й транскрипцію (репліказа). При реплікації одноланцюгових РНК спочатку синтезуються комплементарні геному ланцюги, які, своєю чергою, стають матрицями для синтезу копій генома. Механізм реплікації дволанцюгової РНК добре вивчено у реовірусів, віріони яких також містять вірусоспецифічну РНК-полімеразу. Після проникнення віріону в клітину РНК-полімераза частково звільняється від білків, активується і здійснює синтез ІРНК, причому зчитування відбувається тільки з одного ланцюга батьківських молекул РНК, тобто за консервативним механізмом.

Синтез дволанцюгових дочірніх молекул РНК здійснюється асинхронно -- на матриці батьківської РНК синтезуються комплементарні її ланцюги, які є матрицями для синтезу другого ланцюга РНК.

Синтез компонентів вірусних частинок може відбуватися в різних структурах ядра і цитоплазми. У деяких вірусів синтез вірусних нуклеїнових кислот проходить в ядрі, а синтез вірусних білків -- в цитоплазмі. Отже, на відміну від бактерій та інших клітинних організмів, вірусам властивий диз'юнктивний (роз'єднаний) спосіб розмноження, який полягає в тому, що їхні компоненти синтезуються в клітині хазяїна відокремлено, неодночасно в різних місцях.

Складання вібріонів і вихід їх з клітини. Завершальним етапом внутрішньоклітинного існування вірусів є формування з новосинтезованих компонентів (НК і білків) нових вібріонів з властивою їм структурою та вихід дозрілих вірусних частинок з клітини.

Упродовж еволюції у вірусів виникли два способи перебігу цього завершального етапу. В аденовірусів, пікорнавірусів, реовірусів та деяких інших складання та дозрівання вібріонів йде усередині клітини. У вірусів, які мають оболонку (РНК-вмісні віруси з негативним геномом, ретровіруси та інші), складання вібріону і вихід його з клітини відбувається шляхом відбрунькування в зовнішнє середовище. Вважається, що це найбільш ефективний механізм виходу вірусу.

При диз'юнктивному розмноженні утворення вібріону можливе лише в тому випадку, якщо вірусні НК і білки володіють здатністю при достатній концентрації «упізнавати» один одного серед різноманітних клітинних білків і НК та спонтанно з'єднуватися. Білково-нуклеїнове «упізнавання» обмежено невеликою ділянкою нуклеїнової кислоти і визначається унікальною послідовністю нуклеотидів у некодуючій частині вірусного генома.

У простих вірусів спочатку формуються провібріони, які далі, в результаті модифікації білків, перетворюються на вібріони. Найпростіший механізм складання вібріонів спостерігається у вірусів зі спіральною симетрією. Так, у класичного представника таких вірусів -- ВТМ -- вібріони формуються самоскладанням, тобто спонтанною агрегацією за типом кристалізації.

У складних вірусів складання вібріонів здійснюється у кілька етапів з участю ядерних і цитоплазматичних мембран. Взаємодія нуклеїнової кислоти з внутрішніми білками приводить до формування нуклеокапсидів, які є проміжними структурами при складанні. У деяких вірусів є низка гідрофобних білків, які виконують функції посередників між сформованими нуклеокапсидами і вірусними оболонками. Механізм складання вібріонів РНК- і ДНК-вмісних вірусів досить складний і досі ще недостатньо вивчений.

Останньою стадією репродукції вірусів є вихід повністю сформованих вібріонів з клітини назовні. Це відбувається шляхом «вибуху» або брунькування. При першому способі спостерігається лізис (руйнування) і загибель клітини і вихід з неї дозрілих вібріонів. Це характерно для вірусів, які не мають ліпопротеїдної оболонки (адено-, пікорна-, рео-, парвовіруси та ін.).

Вихід із клітини шляхом брунькування властивий вірусам, які мають ліпопротеїдну мембрану, що є похідною клітинних мембран. При цьому способі клітина хазяїна може тривалий час зберігати життєздатність і продукувати вірус до повного виснаження своїх ресурсів.

Розглянутий нами процес розмноження властивий переважній більшості вірулентних вірусів, основною рисою яких є здатність автономно розмножуватися в інфікованій клітині, що, як правило, призводить до загибелі клітин хазяїна. Однак існує велика група так званих помірних вірусів, характерною рисою яких є здатність до інтеграції (об'єднання) вірусного генома з геномом клітини хазяїна. В цьому разі вірус у клітині нічим не виявляє своєї присутності і тривалий час існує «приховано» (екліпс), стаючи нібито складовою частиною генетичного матеріалу клітини.

Розділ 2. Поняття про бактеріофаги, їх особливості

2.1 Морфологія фагів

Терміни “бактеріофаги” і “бактеріофагія” стали загальновизнаними. Поряд з ними в літературі широко застосовується зручний термін “фаг”, на позначення і бактеріофагів, що вражають бактерій, і для відкритих дещо пізніше актинофагів (які вражають актиноміцети), альгофагів (що вражають деякі водорості).

Припущення, що бактеріофаги мають корпускулярну природу, було висунуто ще Ф.д'Ерелєм. Однак тільки після винайдення електронного мікроскопа вдалося побачити і вивчити ультраструктуру фагів. Нагадаємо, що довгий час уявлення про морфологію та основні особливості фагів ґрунтувалися на результатах вивчення фагів Т-групи -- ТІ, Т2,..., Т7, які розмножуються на Е.соlі штаму В. Однак з кожним роком з'являлися нові дані щодо морфології і структури різноманітних фагів, що зумовило необхідність їхньої морфологічної класифікації.

Детальні електронно-мікроскопічні дослідження, в поєднанні з деякими фізико-хімічними методами вивчення фагів Т-групи, показали, що кожен фаг складається з різних морфологічних елементів.

Основні частини найкраще вивчених булавоподібних фагів становлять головка з білковою оболонкою -- капсидом і відросток. Субодиниці капсиду називають капсомерами. Структурні елементи складних відростків дістали назву зовнішнього чохла, внутрішнього стрижня і базальної пластинки, відростка з зубцями і нитками.

А.С. Тихоненко (1972) поділяє фаги з огляду на ускладнення їхньої структури (що з еволюційної точки зору є найбільш доцільним) на п'ять основних груп. (рис. 6)

До першої групи слід віднести ниткоподібні фаги fd, fl, M13 та ін. За формою вони нагадують вібріони ВТМ. Це довгі гнучкі палички (700--850 нм), які складаються з трубкоподібного капсиду зі спіральним типом симетрії і містять одноланцюгову ДНК.

Рис 5. Структура бактеріофага Т2:

А -- електронна фотографія фага Т2, Б -- схема структури: 1 -- білкові субодиниці капсиду; 2 -- головка фага; 3 -- ДНК; 4 -- відросток; 5 -- футляр, 6 -- стрижень; ?-- пластинка з шістьма зубцями, 8 -- нитки виростка

Другу групу складають дрібні сферичні фаги ікосаедричної форми без диференційованого відростка. Серед них розрізняють дві підгрупи. Фаги першої підгрупи (S13, ц x 174 та ін.) мають одноланцюгову ДНК, а фаги другої підгрупи -- f2, fr, MS2, R17, М12 -- РНК.

До третьої групи відносять фагів з чітко вираженим хвостовим відростком невеличкого розміру. Вони інфікують бактерії, актиноміцети, хлорелу та інші організми. За будовою їхнього відростка виділяють дві групи. Представники першої групи (фаги ТЗ і Т7) мають короткий конусоподібний відросток без базальної пластинки, а представники другої (наприклад, фаг Р22 Salm. typhimurium) -- короткий відросток з базальною пластинкою.

До четвертої групи належать булавоподібні фаги з довгим відростком, що не скорочується і нагадує гофровану трубку (фаги ТІ, Т5, л та інші). Вони містять дволанцюгову ДНК.

Рис. 6. Схематичне зображення представників різних груп фагів (за А.С.Тихоненком, 1968)

П'яту групу становлять булавовидні ДНК-вмісні фаги з добре розвинутим складним відростком. При скороченні зовнішнього чохла відростка оголюється дистальний кінець внутрішнього стрижня, який може проникати через клітинну стінку бактерій. Представники цієї групи найкраще вивчені (фаг Т2 та інші Т-парні фаги, рис. 7).

Рис. 7. Днк, яка звільнилася з головки фага Т2 під дією осмотичного шоку

2.2 Хімічний склад фагів

Вивчення хімічного складу фагів показало, що він досить простий; по суті фаги є нуклеопротеїдами, тобто складаються в основному з білка і нуклеїнової кислоти. Фагові частинки мають кілька різних білків, насамперед структурних, які становлять капсид головки і елементи відростка (чохол, стрижень, базальну пластинку і нитки). У головці булавоподібних фагів є також внутрішній білок (3-7 % загального вмісту білка). У фагів виявлено ферменти лізоцим, фосфатазу та деякі інші. Білки виконують різні функції: захищають нуклеїнову кислоту від пошкоджень і дії ферментів нуклеаз, беруть участь у тісному контакті фага з бактеріальною клітиною, забезпечують через ферментативну дію процес зараження тощо.

Другою важливою складовою частиною фагів є нуклеїнові кислоти. У фагів, як і в інших вірусів, є тільки один тип нуклеїнової кислоти -- ДНК або РНК. Цією властивістю віруси відрізняються від інших мікроорганізмів, в клітинах яких є обидва типи нуклеїнових кислот. У фагів виявлено дволанцюгову ДНК (найчастіше) і одно-ланцюгові ДНК та РНК. Залежно від типу своєї нуклеїнової кислоти фаги поділяють на ДНК-вмісні і РНК-вмісні. Нуклеїнова кислота щільно упакована у головці фага.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.