Рефераты. Биохимические особенности и взаимодействие нейронов и нейроглии

p align="left">Накоплено немало данных о наличии, на астропитах не только белков-транспортеров, но и типичных рецепторов глутамата, ГАМК и норадреналина. Роль их неясна, хотя следует иметь их ввиду, учитывая гипотезу о движении сигналов через сеть астроцитов, рассмотренную выше в связи с осцилляцией концентраций ионов Са*.

Исследование особенностей количественного состава и метаболизма свободных аминокислот тесно связано с изучением белкового состава нейронов и нейроглии, которые в значительной степени определяют морфологическую и функциональную специфику этих клеточных популяций в ЦНС.

Анализ общего содержания белка в обогащенных нейронами и нейроглией фракциях свидетельствуют о том, что в глиальных клетках содержание белка несколько выше по сравнению с нейронами. Очевидны принципиальные различия, обусловленные отсутствием в глии аксональных транспортных систем, терминалей, органелл, накапливающих и выбрасывающих в синаптическую щель медиаторы, сложных систем межнейронального узнавания и адгезии и т.п.

Большое значение для понимания роли белков в системе ней-рон-нейроглия имеют исследования их метаболизма. Эти исследования позволяют изучить не только динамическое состояние нейрональных и нейроглиальных белков, но и их взаимоотношения. Экспериментальные данные свидетельствуют о том, что синтез нейрональных белков протекает в 2-3 раза интенсивнее по сравнению с нейроглиальными белками. Метаболизм белков различен не только в зависимости от клеточной популяции, но и внутри самой популяции. Так, установлено, что метаболизм белков крупных нейронов имеет более высокий уровень по сравнению с мелкими нейронами, а белки астроцитов метаболиру-ют интенсивнее белков олигодендроглии. Эта закономерность прослеживается как у взрослых, так и у растущих животных.

Исследование метаболизма белков нейронов и нейроглии проводится in vitro и in vivo, причем следует подчеркнуть, что в опытах in vivo также прослеживается отличие в их биосинтезе на уровне нейронов и нейроглии. Включение различных аминокислот в белки имеет некоторую избирательность. При инкубации срезов коры головного мозга кроликов с мечеными аминокислотами с последующим выделением обогащенных фракций оказалось, что лейцин включается в нейрональные белки в 5-6 раз, а глицин, глутамат и фенил ал анин - в 2,5 раза интенсивнее, чем в белки нейроглии. В отличие от аминокислот: включение иС-глюкозы в белки нейронов и нейроглии практически одинаково, а в некоторых опытах даже выше в глиальной фракции. Несомненный интерес представляют длительные по времени наблюдения белкового метаболизма в субклеточных фракциях нейронов и нейроглии. Установлено, что в зависимости от времени радиоактивной экспозиции наблюдается перераспределение радиоактивной метки между субклеточными фракциями нейронов и нейроглии. Так, через 10 мин после введения С-фенилаланина наибольшая радиоактивность обнаруживается в микросомах, через 20 мин - в митохондриях, а через 45 мин - в ядерной фракции. При исследовании водорастворимой фракции максимальная радиоактивность регистрируется через 15 мин, а затем она снижается и остается на постоянном уровне, что связано с миграцией цитоплазматиче-ских белков в аксон.

Уровень метаболизма белков нейронов и нейроглии при исследовании в опытах in vitro в значительной степени зависит от условий инкубации клеточных фракций. Так, например, включение Н-лейцина в нейрональные белки значительно увеличивается по мере нарастания парциального давления 02, тогда как в клетках нейроглии практически не наблюдается каких-либо изменений.

Особый интерес для понимания механизмов, лежащих в основе работы системы нейрон-нейроглия, представляют исследования, в которых проводится изучение процессов метаболизма белков при изменении функционального состояния ЦНС. Имеющиеся экспериментальные данные свидетельствуют о том, что изменение функционального состояния влечет за собой неодинаковые изменения в процессах метаболизма белков в нейронах и нейроглии. Так, например, при 3-часовой гипоксии включение Н-лейцина увеличивалось в белки нейронов и уменьшалось в белки нейроглии. В этот период различия в уровне метаболизма в нейронах и нейроглии были не очень значительными. Однако на фоне 16-часовой гипоксии наблюдалось резкое увеличение включения изотопа в белки нейронов. При локальном у-облучении коры головного мозга кролика через 2 дня происходит уменьшение включения Н-лейцина в белки как нейронов, так и нейроглии. В течение последующих 2 недель наблюдалось усиление включения метки в белки нейронов на фоне уменьшения включения в белки нейроглии. Такие воздействия, как алкогольная интоксикация и аноксия, вызывают снижение синтеза белков в нейроглии, в то время как в нейронах практически не происходит изменений. В то же время прямые ингибиторы белкового синтеза пуромицин и циклогексимид значительно снижают скорость включения аминокислот в ней-рональные белки.

Рассмотренный экспериментальный материал по метаболизму белков в экстремальных условиях показывает, что в нейроглии происходит значительное снижение скорости метаболизма белка, в нейронах эти воздействия не вызывают снижения метаболической активности белков, а даже наоборот, при облучении и гипоксии наблюдается усиление их обмена, что, по-видимому, обеспечивает «нормальную» работу нейронов при увеличении функциональной нагрузки. В то же время действие прямых ингибиторов белкового синтеза вызывает более значительное угнетение белкового метаболизма в нейронах, что связано с большей чувствительностью белоксинтезируюших систем нейронов по сравнению с нейроглией. Таким образом, на примере метаболизма белков и аминокислот подтверждается вывод о существовании единой, но строго комиартментализованной метаболической системы нейрон-нейроглия, в которой процессы синтеза и распада белков и аминокислот теснейшим образом связаны и взаимообусловлены.

3. Ферментативные системы нейронов и нейроглии

Особенности протекания метаболических процессов в нейрональных и нейроглиальных клетках наиболее отчетливо проявляются при изучении активности ферментных систем, под контролем которых они находятся. Ранние работы по исследованию активности ферментов в обогащенных фракциях нейронов и нейроглии показали, что активность таких дыхательных ферментов, как цитохромоксидаза, НДЦ-Н2-дегидроге-наза, сукцинатдегидрогеназа и малат-дегадрогеназа значительно выше в глиальных, по сравнению с нейро-нальными, клетках. Позднее эти выводы получили подтверждение при изучении митохондриальных ферментов нейронов и нейроглии.

Имеющиеся данные свидетельствуют не только о различии в активностях дыхательных ферментных систем нейронов и нейроглии, но и о глубоких различиях путей использования источников энергии в нейронах и глии. Уровень дыхания нейрональных клеток в несколько раз превышает уровень дыхания нейрог-лиальных клеток. В отличие от дыхательных ферментов активность гликолитических ферментов выше в глиальных клетках. Ферментные системы нейронов и нейроглии различаются по своим кинетическим параметрам и изоферментному составу.

Таблица 1. Изоферментный состав некоторых ферментов нейронов

и нейроглии

Название фермента

Нейроны

Нейроглия

Малатдегидрогеназа

2 изофермента

3 изофермента

Лактатдегидрогеназа

Н-форма

М-форма

Моноаминоксидаза

В-форма

А-форма и В-форма

Енолаза

уу- и, возможно, ау-формы

аа-форма

Структуры а-субъединины в нейронах и нейроглии различаются

Из табл. видно, что в нейрональных митохондриях в составе малатдегидрогеназы обнаруживаются два изофермента, в то время как в глиальных митохондриях имеются 3 изофермента. Экспериментальные исследования подтвердили ранее высказанное предположение о существовании Н-формы лактат-дегидрогеназы в нейрональных клетках, а М-формьг - в глиальных. Активность лактагдегид-рогеназы в олигодендроцитах на порядок выше, чем в астроцитах.

Моноаминооксидаза нейронов представлена В-формой, которая преимущественно катализирует окислительное дезамини-рование бензиламина и фенилэтиламина. В.тлиальных клетках этот фермент представлен А-формой, катализирующей обмен норадреналина и серотонина, а также В-формой. Иммунохи-мическое исследование показало существование двух форм ено-лазы, которые структурно различаются в зависимости от локализации в той или иной клеточной популяции ЦНС, Однако позднее было установлено присутствие в нервной ткани 3 изо-энзимов енолазы: act, ay и уу, количество которых меняется под действием пре- и постганглионарной стимуляции или при добавлении ацетилхолина и высоких концентраций ионов К+. В нейронах локализован у-димер енолазы, а в нейроглиальных клетках - aa, хотя ряд авторов полагает, что в нейронах обнаруживаются и ay-формы енолазьг

Выше уже отмечалось, что характерной особенностью обоих типов клеток ЦНС является способность аккумулировать одновалентные ионы, в частности ионы К+, против градиента концентрации. Это связано, в свою очередь, с ферментативными системами, обеспечивающими транспорт ионов. В табл. 2 представлены данные, которые наглядно показывают зависимость аккумуляции нейрональными и нейроглиальными клетками ионов К+ от их концентрации во внеклеточном пространстве. При физиологических значениях внеклеточной концентрации ионов К+ наблюдается интенсивное поглощение К+ нейрональными и нейроглиальными клетками, причем степень поглощения в глиальных клетках в среднем в 2 раза выше, чем в нейро-нальных. Ферментом, с помощью которого осуществляется активный транспорт ионов К+, является Na+, К+-АТФаза. Установлено, что обшая АТФазная активность нейроглии превышает последнюю в нейронах, и наиболее отчетливо это проявляется для Na+, К+-АТФазы. При физиологических значениях концентрации внеклеточного К* активность Na*, - АТФ-азы в клетках нейроглии превышает активность нейрональной Na+, К+-АТФазы в среднем в 4 раза.

Таблица 2. Влияние концентрации ионов К+ на поглощение их нейрональными и нейроглиальными клетками

Концентрация К+, мМ

Квн

/кк

нейроны

нейроглия

5

2,25±0,2

4,80±0,6

10

2,] 0±0,2

4,50±0,3

25

1,60+0,3

3,0±0,5

50

1,20±0Д5

1,45±0,15

100

1,00±0,1

1,60±0,35

Таблица 3. Активность Na+, К+-АТФазы плазматических мембран нейронов и нейроглии. Влияние концентрации ионов К+

Концентрация ионов К+

Активность Na+, К+-АТФазы

нейроны

нейроглия

5

1,00±0,50

2, G±0,5

10

2,25±0,55

8,5±1,7

29

1,50±0,75

5,0±1,0

Более высокий уровень активности Na+, К+-АТФазы в нейроглии по сравнению с нейронами характерен для всех стадий онтогенеза. Так, у крыс уже к 10-му дню постнатального развития активность Na+, К+-АТФазы нейроглии превышает ее активность в нейронах, а к 21 дню глиальная фракция обладает в 2-3 раза более высокой активностью, чем нейрональная. Это подтверждает, что глиальные клетки играют важную роль в регуляции внеклеточной концентрации ионов К+. По-видимому, повышение концентрации ионов К+ во внеклеточном пространстве вследствие нейронного разряда является сигналом нейрона для нейроглии активизировать реакции, которые осуществляют контроль за движением и накоплением ионов К+. Такой механизм позволяет клеткам нейроглии удалять избыток К+, накапливающийся во внеклеточном пространстве при возбуждении нейрона.

Не менее важное место принадлежит нейроглии и в регуляции транспорта ионов Са+, которые неразрывно связаны с процессами высвобождения медиаторов, генерации и проведения нервного импульса, т.е. процессами, определяющими функциональную деятельность нервной ткани.

Как показано в модельных опытах, нейроны и нейроглия в среднем поглощают и высвобождают ионы Са+ с одинаковой скоростью, но в то же время имеются значительные различия в Са-потоках в этих клеточных популяциях. Для нейроглии характерна более высокая чувствительность транспорта Са+ к изменению внеклеточной концентрации одновалентных ионов по сравнению с нейронами. Повышение внеклеточной концентрации ионов К+ способствует выходу Са+ из глии во внеклеточное пространство и включению его в механизм высвобождения медиаторов.

Таким образом, на примере анализа ферментных систем и ионных потоков видно, что нейроны и нейроглия и в этом отношении образуют единую, но частично компартментализован-ную систему, которая во многом определяет специфичность протекания метаболических процессов в нервной ткани.

4. Фосфолипиды нейронов и нейроглии

Биохимические процессы, отвечающие за метаболическое единство системы нейрон-нейроглия, протекают на уровне их плазматических мембран. В связи с этим исследование мембранных компонентов нейрональных и нейроглиальных клеток приобретает первостепенное значение. К важнейшим мембранным компонентам, которые принимают непосредственное участие в их структурно-функциональной организации, относятся фосфолипиды.

Имеющиеся в литературе данные по распределению фосфолипидов в нейронах и нейроглии свидетельствуют о том, что глиальные клетки в среднем в 2 раза более богаты фосфолипидами по сравнению с нейронами. В значительной мере это обусловлено особенностями олигодендроглии, формирующей в онтогенезе миелиновую оболочку аксонов.

Качественный состав фосфолипидов нейронов и нейроглии очень сходен, хотя и имеются некоторые отличия в содержании тех или иных индивидуальных фосфолипидов. Основную часть фосфолипидов составляют фосфатидилхолин и фосфатидилэта-ноламин, их доля равна -90%.

Значительные отличия наблюдаются в распределении минорных фосфолипидов. Так, нейроны богаче такими фосфолипидами, как лизофосфатидилхолин, фосфатидилинозитол, а нейроглия - сфингомиелином и фосфатидной кислотой. По жирно-кислотному составу фосфолипиды нейронов и нейроглии различаются незначительно. В основном отличия касаются содержания отдельных жирных кислот, что в полной мере проявляется лишь при сравнении нейронов с астроглией. Олигоденд-роглия характеризуется тем, что ее фосфолипиды отличаются высоким содержанием С]8-жирных кислот. Кроме того, в фосфолипидах олигодендроглиальных клеток обнаружены значительные количества плазмалогенов.

Большое значение для понимания роли и взаимоотношений фосфолипидов в системе нейрон-нейроглия имеют исследования метаболической активности последних. При изучении метаболизма фосфолипидов с применением Р установлено, что гидрофильная часть молекулы фосфолипидов нейронов обменивается быстрее по сравнению с нейроглией. Эти результаты получили подтверждение и в работах, где применялись предшественники биосинтеза фосфолипидов, меченые С и Н. Все компоненты молекулы фосфолипидов, как гидрофильные, так и гидрофобные, различаются по уровню своего метаболизма. При этом наиболее значительные отличия в метаболизме отмечены для таких фосфолипидов, как фосфатидилинозитол, фос-фатидная кислота и лизофосфатидилхолин. Это связано с тем, что фосфатидная кислота и фосфатидилинозитол принимают самое непосредственное участие в осуществлении нейромедиа-торных процессов, происходящих на уровне нейрональных клеток.

Данные по динамике включения радиоактивных предшественников свидетельствуют о существовании различных систем биосинтеза фосфолипидов в нейронах и нейроглии. По-видимому, биосинтез нейрональных фосфолипидов обусловлен транспортом предшественников из нейроглии. Большая метаболическая активность нейрональных фосфолипидов но сравнению с нейроглиальными подтверждается и при исследовании ферментов, катализирующих их превращение. Так, активность ЦДФ-холин: 1,2 - диглицерид-холинфосфотрансферазы в нейронах в 3 раза, а активность ЦДФ-этаноламин: 1,2 - диглицерид-этаноламинтрансферазы в 2 раза выше, чем в клетках нейроглии. Активность таких ферментов деградации фосфолипидов, как фосфолипаза Aj, в 8 раз, а фосфолипаза А2 в 5 раз выше во фракции нервных клеток по сравнению с нейроглией.

Выводы

1. Нейрональные и нейроглиальные клетки отличаются друг от друга по ряду биохимических показателей - таких, как состав и синтез белка и аминокислот, транспорт ионов и медиаторов, активность ферментов, метаболизм фосфолипидов и других клеточных компонентов.

2. Экспериментальные данные свидетельствуют о существовании единой, но в то же время строго компартментализован-ной, метаболической и функциональной системы нейроннейроглия. В этой системе нейрон является ведущей функциональной единицей нервной ткани, хотя его метаболизм и функции не могут быть обеспечены без участия глии.

3. Наиболее яркими примерами разделения функций нейронов и нейроглии и в то же время их взаимодействия являются:

а) системы метаболизма глутамата-глутамина-ГАМК и некоторых других аминокислот и медиаторов;

б) состав и миграции нейроспецифических белков;

в) распределение и особенности структуры ферментов энергетического обмена;

г) регуляция уровня ионов калия;

д) состав и функции липидов.

4. Есть основания полагать, что астроциты, образуя протяженные системы тесно сопряженных клеток, способны передавать модуляторные сигналы.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.