Рефераты. Динамическое поведение мембранных систем и липидно-белковые взаимодействия

p align="left">Наконец, несколько подходов использовалось для теоретического объяснения влияния мембранных белков на латеральную диффузию белков и липидов в мембране. Дело в том, что белки оказываются на пути диффундирующих молекул и вынуждают их перемещаться только в пространстве, не занятом белками. Обычно из-за этого коэффициенты поступательной диффузии в биомембранах оказываются примерно в 10 раз меньше, чем в чисто липидных бислоях.

4.2 Примеры латеральной диффузии компонентов мембран

Коэффициенты поступательной диффузии некоторых мембранных липидов и белков приведены в табл. 5.2. Коэффициенты диффузии флуоресцентных меток и аналогов липидов в фосфолипидных мультибислоях или в крупных однослойных везикулах равен 10"8 см2/с. При изучении поведения этих же зондов в разнообразных природных мембранах коэффициент диффузии обычно оказывается примерно в 10 раз меньше. Этот феномен, как правило, объясняют присутствием в биомембранах белков, препятствующих латеральной диффузии. Скорость латеральной диффузии фосфолипидов с разными полярными головками различается слабо, однако в реконструированных везикулах гангли-озиды диффундируют медленнее. При переходе мембранного бислоя в состояние геля скорость латеральной диффузии уменьшается более чем на два порядка {D < 10" 10 см2/с). В жидком бислое модельных мембран и в биомембранах липиды обычно диффундируют свободно, хотя имеются редкие исключения.

Совсем иначе обстоит дело с латеральной диффузией мембранных белков. Исследование поведения нескольких белков в реконструированных везикулах, пока не позволяющее сделать окончательные выводы, тем не менее указывает на то, что коэффициенты поступательной диффузии белков разных размеров очень близки и что белки диффундируют лишь немного медленее, чем липиды. Исследованные белки сильно различались по числу трансмембранных сегментов и по степени ассоциированности, и тем не менее диффундировали с одинаковой скоростью. Модель Саффмана--Дельбрюка предсказывает очень слабую зависимость скорости диффузии от размеров молекул. В реконструированных везикулах с высоким содержанием белка могут происходить агрегация последнего и латеральное разделение фаз, приводящие к иммобилизации части белка.

В биомембранах коэффициенты латеральной диффузии белков обычно в 100--1000 раз меньше, чем в модельных системах с низкой концентрацией белка. Например, родопсин, по-видимому, свободно диффундирует в биомембране-- D = 4-10"9 см2/с. Поскольку мембраны, содержащие родопсин, характеризуются высоким отношением белок/липид, ясно, что обычно наблюдаемая медленная диффузия других мембранных белков не может быть обусловлена исключительно присутствием белков в бислое. Есть и еще один интересный факт: восстановление флуоресценции в экспериментах FRAP происходит не полностью и нередко составляет менее 75%. Это означает, что часть изучаемой популяции белков ^ неподвижна.

Вопрос о том, что ограничивает латеральную диффузию мембранных белков, имеет ключевое значение. Маловероятно, что это обусловлено агрегацией мембранных белков, поскольку для объяснения большинства данных потребовалось бы предположить, что образуются слишком крупные агрегаты. Одно из возможных объяснений состоит в том, что мембранные белки,малоподвижны, поскольку связаны с внеклеточным матриксом или с ци-тоскелетом. Обнаружилось, что, оказывая воздействие на внеклеточный матрикс, можно влиять на латеральную диффузию мембранных белков, однако имеются и другие данные, согласно которым эта связь не столь уж важна.

О взаимодействиях между мембранными белками и элементами цитоскелета, ответственных за некоторые из наблюдаемых ограничений латеральной диффузии белков, свидетельствуют разные данные. Белок полосы 3 в мембранах эритроцитов в норме в основном неподвижен, но в клетках с недостатком спектрина его латеральная подвижность возрастает по меньшей мере в 40 раз. При нарушениях цитоскелета в тенях эритроцитов латеральная диффузия белка полосы 3 также возрастает. Проводились опыты по изучению диффузии ацетилхолиновых рецепторов во вздутиях в мембранах, где связь с актином и элементами цитоскелета нарушена. Подвижность белка в таких системах была гораздо выше, чем в клетках с интактным цитоскелетом. Тем не менее, гипотезу о том, что низкая подвижность мембранных белков обусловлена их связью с цитоскелетом, нельзя считать бесспорной.

Известен по крайней мере один случай, когда взаимодействия с цитоскелетом не сказываются на латеральной диффузии. G-белок вируса везикулярного стоматита находится в плазматической мембране инфицированных животных клеток и имеет единственный трансмембранный сегмент. Были получены мутантные формы этого белка, у которых цитоплазматический домен отсутствовал. Ни для одного из мутантов не наблюдалась быстрая латеральная диффузия, которая характерна для мембранных белков, встроенных в искусственные бислои. Эти результаты свидетельствуют о том, что прямые взаимодействия между данным белком и цитоплазматическими белками не приводят к уменьшению латеральной подвижности.

Наконец, следует отметить, что с помощью метода FRAP, используемого в большинстве этих экспериментов, была зарегистрирована диффузия на расстояние от нескольких сотен А до 1 мкм. Белок может свободно диффундировать внутри небольшого домена, но встречать препятствия на своем пути в присутствии других интегральных или периферических белков, и при использовании метода FRAP будет считаться неподвижным. Кроме того, если бы взаимодействие между мембранными белками и белками цитоскелета было относительно слабым и частота их ассоциации и диссоциации была достаточно высока, белок мог бы перепрыгивать с одного сайта связывания на другой. В результате суммарная скорость латеральной диффузии уменьшилась бы, поскольку белок большую часть времени находился бы в связанном с цитоскелетом состоянии, но скорость движения белка между сайтами связывания была бы высока. Образование кластеров мембранных белков за счет притяжения между ними также приводит к уменьшению латеральной диффузии.

5. Липидно-белковые взаимодействия

Большинство методов, применяемых для изучения упорядоченности и динамических свойств мембран, используется и для исследования липидно-белковых взаимодействий. Работы по изучению этих взаимодействий были в основном направлены на выяснение влияния мембранных белков на физическое состояние липидов. Рассмотрим типичную мембрану с весовым соотношением липид/белок = 1:1. При средней мол. массе белка 50 кДа молярное соотношение липид/белок составляет -60:1 при условии, что присутствуют только фосфолипиды. Для сравнения укажем, что соответствующие соотношения для мембраны наружного сегмента палочки сетчатки и саркоплазматического ретикулума составляют по оценкам 75:1 и 110:1. Если белок представляет собой цилиндр, выступающий за пределы бислоя с обеих сторон примерно на 10 А, то его радиус должен составлять около 18 А. Молекула фосфолипида в жидкой мембране занимает площадь ~60А2, что соответствует радиусу головки ~4,4 А, и для того, чтобы полностью окружить белок, иа каждой стороне бислоя должно находиться около 16 таких молекул липидов. Следовательно, согласно этой модели, в любой момент времени около 50% липидов должно соседствовать с белковыми молекулами. Однако белком занято 35% площади поверхности мембраны, и даже учитывая сугубо приближенный характер этой модели, можно понять, что физические методы регистрации состояния липидов должны учитывать влияние белков на свойства биомембран.

Чтобы выяснить структуру и функции мембран, необходимо прежде всего ответить на следующие вопросы: 1) насколько прочно связаны внутримембранные белки с липидами и какова природа ли-пидного слоя, прилегающего к белку? 2) как далеко простирается влияние мембранных белков на укладку и динамические свойства мембранных липидов? 3) как влияют липиды на структуру и функции внутримембранных белков? 4) как периферические мембранные белки, связанные с поверхностью бислоя, взаимодействуют с липидами и влияют на их поведение?

5.1 Связывание липидов с внутримембранными белками в бислое

Этой теме были посвящены многочисленные исследования, в которых использовались разнообразные подходы. По существу во всех этих работах ставилась задача выяснить, есть ли у белков участки, специфически взаимодействующие с определенными липидами, и можно ли считать белково-липидные комплексы долгоживущими, т. е. обладают ли они временем жизни, сравнимым с временем оборота типичного фермента. Такие исследования проводились с помощью Н-ЯМР, ЭПР и флуоресцентных методов. Чтобы разобраться в полученных результатах, полезно рассмотреть термодинамику простой реакции обмена, где липид одного типа вытесняется с места связывания на белке другим липидом:

Константа равновесия этой реакции равна

Она является относительной константой связывания липидов Li и L2 с данным участком белковой молекулы, причем

Если липиды двух типов присутствуют в мембране в одинаковой концентрации и сродство их к белку одинаково, то К = 1. Рассмотрим гипотетический случай, когда L2 является минорным липидным компонентом и составляет только 5°/о от общего количества липидов. Тогда

Предположим, что L2 предпочтительно связывается с неким участком белковой молекулы, так что в равновесии 90% участков занято L.2. Тогда

Следовательно, К = 171, что соответствует величине ДС° = = -3,1 ккал/моль. Столь небольшого различия в свободной энергии связывания оказывается достаточно для существенного смещения распределения липидов, связанных с белком, от равновесного состояния. Это обусловлено тем, что соотношение эффективных концентраций конкурирующих липидов в мембране относительно мало: не превышает 100, а в большинстве случаев гораздо меньше. Другими словами, даже минорные липиды присутствуют в мембране в концентрации, составляющей не менее 1% от концентрации основных липидов, с которыми они конкурируют за места связывания на белках.

Для оценки относительного сродства липидов к специфическим белкам используют два подхода. Они основаны на применении липидных аналогов, встроенных в фосфолипидные везикулы, которые содержат интересующий исследователя белок.

1. Спин-меченные фосфолипиды, соседствующие с мембранными белками, обладают ограниченной подвижностью. Это проявляется в уширении спектра ЭПР. У тех молекул ЭПР-зонда, которые соседствуют с белком, возможность движения с характерной частотой > 108 с" 1 существенно ограничена. Спектр ЭПР в этом случае может быть представлен в виде суммы двух компонент: компоненты с узкими спектральными линиями, соответствующей основной липидной фазе, и компоненты, отвечающей липидам с ограниченной подвижностью. Для того чтобы эта последняя была в спектре преобладающей, отношение белок/липид должно быть достаточно высоким. Осложняет картину то, что липиды могут попадать в «ловушки» из белковых агрегатов. Такие липиды тоже обладают ограниченной подвижностью, и им соответствует третья компонента в спектре ЭПР. Для выявления попавших в ловушку липидов при высоких концентрациях белка можно использовать липидные спиновые зонды, ковалентно связанные с поверхностью белка.

2. Спин-меченные и бромированные липидные производные способны тушить флуоресценцию триптофана, входящего в состав мембранных белков. Эффективность тушения зависит от расстояния между липидным производным и остатком триптофана, и присутствие таких липидов в слое, непосредственно прилегающем к белку, приведет к тушению флуоресценции белка. Относительную способность этих липидов связываться с белком в присутствии различных конкурирующих липидов можно исследовать путем измерения интенсивности флуоресценции белка.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.