Рефераты. Эколого-физиологические особенности микроскопических грибов представителей рода Aspergillus, выделенных из разных местообитаний

p align="left">Например, многие микромицеты могут использовать в качестве единственного источника углерода органические кислоты. Для определения способности расти на средах с органическими кислотами рекомендуется плотная среда состава (г/л): (NH4)2HPO4 - 0,5; MgSO4*7H2O - 0,2; NaCl - 0,1; агар - 15,0; органическая кислота в виде соли Na или К - 2,0; pH 6,8. До стерилизации к среде добавляют 20 мл 0,04% водного раствора индикатора метилрот, который в интервале pH 6,8 - 8,4 изменяет окраску от желтой к красной. Среду разливают в пробирки и стерилизуют при 1 атм. Посев проводят уколом. Продолжительность культивирования от 2 до 14 суток в зависимости от скорости роста микроорганизмов. О потреблении органических кислот свидетельствует рост по уколу и изменение кислотности среды в щелочную сторону, что отчетливо заметно по цвету индикатора.

Некоторые грибы способны использовать и такие химически устойчивые соединения, как углеводороды. Выявить способность микроорганизма окислять жидкие нелетучие углеводороды можно на плотной среде состава (г/л): KNO3 - 4,0; KH2PO4 - 0,6; Na2HPO4*12H2O - 1,4; MgSO4*7H2O - 0,8; выщелоченный агар - 2,0; pH 7,2. Среду стерилизуют в колбах при 1 атм. и разливают в чашки Петри толстым слоем. После того как среда застынет, в центре агаровой пластинки вырезают лунку. Для этой цели можно воспользоваться пробочным сверлом (диаметр 8-10 мм), которое предварительно стерилизуют в пламени горелки. Микромицеты высевают радиальными штрихами от лунки к периферии чашки. В лунку вносят 2-3 капли исследуемого углеводорода (стерилизуют фильтрованием). Чашки помещают в термостат строго горизонтально, не переворачивая. Через 7-10 суток отмечают наличие или отсутствие роста по штриху в сравнении с контролем - ростом на среде без углеводорода (Нетрусов, 2005).

2.5 Определение радиальной скорости роста

Определение радиальной скорости роста грибов проводили на плотной питательной среде за определенный промежуток времени. После 48 часов инкубации при 25±20С измеряют диаметр выросших на чашках колоний при помощи линейки. Эту операцию повторяют через каждые двое суток в течение двух недель.

За диаметр отдельной колонии в данный момент времени принимают среднее арифметическое измерение. Вычисление радиальной скорости проводят по формуле:

Kr = (r - ro) / (t - to),

где k - радиальная скорость роста;

ro - радиус колоний в начальной момент времени to;

r - радиус колоний в момент времени t (Паников, 1991).

3. Исследование роста микромицетов рода Aspergillus на различных источниках углеродного питания

Объектами исследования явились различные виды микроскопических грибов рода Aspergillus: A. niger, A. ustus, A. terreus, A. flavus и A. fumigatus. В качестве источника углерода использовали из легкоусвояемых: сахара (сахароза, лактоза, ксилоза, арабиноза, галактоза, мальтоза), многоатомные спирты (глицерин, манит, сорбит), крахмал; из трудноразлагаемых (нефть, целлюлоза, гербицид, пестицид).

В результате посева исследуемых видов Aspergillus на среду Чапека с различными источниками углерода и среду Частухина с целлюлозой было установлено, что изменение экологических условий оказывает существенное влияние на развитие микромицетов. Была изучена способность штаммов использовать различные легкоусвояемые и трудноусвояемые источники углерода методом определения радиальной скорости роста выросших колоний. Оценка возможности потребления различных источников углерода показала, что они способны утилизировать многие источники углеродного питания, но ни один из исследуемых видов не разлагал такие трудноусвояемые вещества, как гербицид и пестицид. Динамика роста видов на разных средах при одинаковых условиях инкубации, не одинакова.

В таблице приложения и на рисунках 1-15 приведены зависимости радиальной скорости роста от времени у изученных грибов на различных источниках углерода.

Рис. 1. Радиальная скорость роста A. niger на сахарах

Уже на первые сутки культивирования A. niger хорошо развивается во всех средах, кроме среды с ксилозой. Затем наблюдается скачок роста на средах с сахарозой и галактозой. К концу времени инкубации скорость роста колоний уменьшается и наибольшей становится на среде с мальтозой. Наибольшие биологические ритмы приходятся на 48-96 ч. и 144-264 ч. времени культивирования.

Рис. 2. Радиальная скорость A. terreus на сахарах

В первые дни культивирования наибольшая скорость роста A. terreus наблюдается на средах с сахарозой, арабинозой и галактозой. Затем происходит скачок роста на средах с сахарозой и арабинозой. На 14-е сутки культивирования наблюдается резкий скачок в росте на среде с галактозой. Биологические ритмы максимальны на 144-264 ч. дни инкубации.

Рис. 3. Радиальная скорость роста A. fumigatus на сахарах

Наибольший рост A. fumigatus наблюдается на среде с сахарозой. Затем на этой среде рост уменьшается и происходит резкий скачок радиальной скорости на среде с арабинозой. К концу времени культивирования наблюдаются наибольшие биоритмы.

Рис. 4. Радиальная скорость роста A. flavus на сахарах

Из данных рисунка 4 видно, что A. flavus хорошо растет на среде с сахарозой. Но к концу культивирования наибольшая скорость роста наблюдается с галактозой. Максимальные биоритмы приходятся на начальный момент времени культивирования - 48-144 ч.

Рис. 5. Радиальная скорость роста A. ustus на различных сахарах

По данным рисунка 5 видно, что наибольшую скорость в течение всего времени инкубации A. ustus проявляет на среде с сахарозой, и резкий скачок в росте наблюдается на среде с галактозой. На протяжении всего времени инкубации рост A. flavus характеризуется высокими биоритмами.

Таким образом, сахара легко усваиваются всеми исследуемыми штаммами. Наибольшие биологические ритмы наблюдаются в течение всего времени экспозиции, как и в начальные часы, так и в конце инкубации.

Рис. 6. Радиальная скорость роста A. niger

Наибольшая скорость роста A. niger наблюдается вначале культивирования на среде с маннитом. Затем скорость роста резко падает и становится минимальной на этой среде. На других источниках углерода также наблюдаются скачки роста, которые к концу инкубации заметно уменьшаются. Максимальные биоритмы приходятся на начальный момент времени культивирования - 48-144 ч.

Рис. 7. Радиальная скорость роста A. terreus

Рост A. terreus наблюдается на всех легкоусвояемых источниках углерода, кроме среды с сорбитом. Вначале и в конце культивирования радиальная скорость роста примерно одинаковая. В середине инкубации наблюдаются скачки роста, особенно на среде с глицерином. Наибольшие биологические ритмы приходятся на 144-264 ч. времени культивирования.

Рис. 8. Радиальная скорость роста A. fumigatus

По данным графика видно, что рост A. fumigatus имеет большие скачкообразные изменения, особенно проявляющиеся на средах с маннитом и глицерином. Наибольшая скорость роста проявляется на среде с маннитом, к середине инкубации наблюдается скачок роста на среде с глицерином. Биологические ритмы характеризуются большими колебаниями и приходятся на середину времени экспозиции - 96 ч. и 216 ч.

Рис. 9. Радиальная скорость роста A. flavus

Радиальная скорость роста A. flavus вначале и в конце культивирования примерно одинаковая. В середине инкубации наблюдаются скачки роста, особенно на среде с крахмалом. Высокие биоритмы наблюдаются на 144-264 ч. инкубации.

Рис. 10. Радиальная скорость роста A. ustus

Наибольшая скорость роста A. ustus наблюдается на средах с маннитом и глицерином. Скорость роста на среде с сорбитом наименьшая и в течение всего времени культивирования значительно не изменяется. Также как и A. fumigatus, A. ustus проявляет большие биоритмы на 144-216 ч.

В целом, рост микромицетов на многоатомных спиртах и крахмале характеризуется высокими биологическими ритмами, приходящимися на середину времени культивирования - 144-264 ч.

Ни один из исследуемых штаммов не растет на средах с единственными источниками углерода в виде пестицида и гербицида.

Рис. 11. Радиальная скорость A. niger на трудноразлагаемых источниках углерода

На трудноразлагаемых источниках углерода рост A. niger наблюдается на средах с целлюлозой и нефтью. В начале инкубации скорость роста на обеих средах одинакова, затем резко увеличивается на среде с целлюлозой, но к концу культивирования она становится минимальной, и происходит скачок роста на среде с нефтью. Максимальные биологические ритмы приходятся к середине времени культивирования - к 96-216 ч.

Рис. 12. Радиальная скорость роста A. terreus на трудноразлагаемых источниках углерода

Из трудноразлагаемых источников углерода A. terreus использует такие, как нефть и целлюлоза. Радиальная скорость роста на обоих источниках в начале культивирования была одинаковой, затем на среде с нефтью резко увеличивается к середине инкубации. На среде с целлюлозой резких скачков роста не наблюдается. Высокие биоритмы также находятся в центре экспозиции - 144-264 ч.

Рис. 13. Радиальная скорость роста A. fumigatus на трудноразлагаемых источниках углерода

На трудноусвояемых источниках углерода рост A. fumigatus наблюдается только на среде с целлюлозой. На 7-е сутки культивирования наблюдается резкий скачок роста, затем он уменьшается до начальной величины. Максимальные биоритмы приходятся на время инкубации - 96-216 ч.

Рис. 14. Радиальная скорость A. flavus на трудноразлагаемых источниках углерода

Скорость роста на обоих источниках вначале культивирования была примерно одинаковой, максимальной - к середине инкубации, а затем она резко уменьшается. К концу культивирования наибольшая скорость роста A. flavus наблюдается на нефти.

Высокие биологические ритмы приходятся на середину времени экспозиции - 96 ч. и 216 ч.

Рис. 15. Радиальная скорость роста A. ustus на трудноразлагаемых источниках углерода

Также как и другие виды, A. ustus проявляет свой рост только на средах с нефтью и целлюлозой. В начале культивирования на среде с целлюлозой наблюдается максимальная скорость роста. На 7-е сутки инкубации происходит скачок роста на среде с нефтью. К концу времени инкубации скорость роста A. ustus на обеих средах примерно одинаково. Наибольшие биоритмы характерны 48-144 ч.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.