Главная:
Рефераты
На главную
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Рефераты. Естествознание и окружающий мир
b>
4. Естествознание и математика
Вряд ли вызывает сомнение утверждение: математика нужна всем вне зависимости от рода занятий и профессии. Однако разным людям необходима и различная математика: для продавца, может быть, достаточно знаний простейших арифметических операций, а для истинного естествоиспытателя обязательно нужны глубокие знания современной математики - только на их основе возможно открытие законов природы и познание ее гармонического развития. Потребность изучения математики в большинстве случаев обусловливается практической деятельностью и стремлением человека познать окружающий мир. Иногда к познанию математики влекут и субъективные побуждения. Об одном из них Луций Анней Сенека (4 в. до н. э), римский писатель и философ, писал: "Александр, царь Македонский, принялся изучать геометрию, - несчастный! - только с тем, чтобы узнать, как мала земля, чью ничтожную часть он захватил. Несчастным я называю его потому, что он должен был понять ложность своего прозвища, ибо можно ли быть великим на ничтожном пространстве".Возникает вопрос: может ли серьезный естествоиспытатель обойтись без глубокого познания премудростей математики? Ответ несколько неожиданный: да, может. Однако к нему следует добавить: только в исключительном случае. И вот подтверждающий пример. Чарлз Дарвин, обобщая результаты собственных наблюдений и достижения современной ему биологии, вскрыл основные факторы эволюции органического мира. Причем он сделал это, не опираясь на хорошо разработанный к тому времени математический аппарат, хотя и высоко ценил математику:"... В последние годы я глубоко сожалел, что не успел ознакомиться с математикой, по крайней мере настолько, чтобы понимать что-либо в ее великих руководящих началах; так, усвоившие их производят впечатление людей, обладающих одним органом чувств более, чем простые смертные".Кто знает - может быть, обладание математическим чувством позволило бы Дарвину внести еще больший вклад в познание гармонии природы.Известно, что еще в древние времена математике придавалось большое значение. Девиз первой академии - платоновской Академии - "Не знающие математики сюда не входят" - ярко свидетельствует о том, насколько высоко ценили математику на заре развития науки, хотя в те времена основным предметом науки была философия. Академия Платона (428/427- 348/347 до н. э), одного из основоположников древнегреческой философии, - первая философская школа, имевшая на первый взгляд весьма косвенное отношение к математике.Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания. "Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является", - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564-1642). В своем произведении "Пробирных дел мастер" (1623) он аргументировано противопоставлял произвольные "философские" рассуждения единственно истинной натуральной философии, доступной лишь знающим математику: "Философия написана в величественной книге (я имею ввиду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана она на языке математики, и знаки ее - треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту".Каково же мнение по этому вопросу философов? Ограничимся лишь высказыванием выдающегося немецкого философа Иммануила Канта (1724-1804). Развивая философскую мысль Галилея в "Метафизических началах естествознания", он сказал: "В любом частном учении о природе можно найти науку в собственном смысле лишь столько, сколько имеется в ней математики... Чистая философия природы вообще, т.е. такая, которая исследует лишь то, что составляет понятие природы вообще, хотя и возможна без математики, но чистое учение о природе, касающееся определенных природных вещей (учение о телах и учение о душе), возможно лишь посредством математики; и так как во всяком учении о природе имеется науки в собственном смысле лишь столько, сколько имеется в ней априорного познания, то учение будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в ней математика".Большинство теорий различных отраслей современного естествознания основаны на математическом описании строгой логической структурой. Рассмотрим характерный пример анализа логической структуры доказательства, позволяющего сделать правильный вывод, даже не обращаясь к эксперименту как необходимому элементу естественно-научной истины. Доказательство касается того, что все тела падают с одинаковой скоростью. Оно изложено Галилеем в книге "Беседы и математические доказательства, касающиеся новых отраслей науки" (1638). Опровергая утверждение Аристотеля о том, что более тяжелые тела падают с большей скоростью, чем легкие (что в то время было актом огромного мужества), Галилей приводит следующее рассуждение. Допустим, Аристотель прав, и более тяжелое тело падает быстрее. Скрепим два тела - легкое и тяжелое. Тяжелое тело, стремясь падать быстрей, будет ускорять легкое, а легкое, стремясь двигаться медленнее тяжелого, будет его тормозить. Поэтому скрепленное тело будет двигаться с промежуточной скоростью. Но оно тяжелее, чем каждая из его частей, и должно двигаться не с промежуточной скоростью, а со скоростью большей, чем скорость более тяжелой его части. Возникло противоречие, и, значит, исходное предположение неверно.Приведенный пример иллюстрирует, насколько сильна логика рассуждений, присущая, как правило, математическому доказательству. Однако это не означает, что следует ограничиваться только подобного рода доказательствами.Выдающийся английский физик, создатель классической электродинамики и один из основоположников статистической физики Джеймс Клерк Максвелл (1831-1879) считал, что "следуя (только) математическому методу, мы совершенно теряем из виду объясняемые явления, и поэтому не можем прийти к более широкому представлению об их внутренней связи, хотя и можем предвычислить следствия из данных законов. С другой стороны, останавливаясь на физической гипотезе, мы уже смотрим на явление как бы через цветные очки и становимся склонными к той слепоте по отношению к фактам и поспешности в допущениях, которые способствуют односторонним объяснениям".При этом он подчеркивал важность физического образа того или иного явления: "Мы должны найти такой прием исследования, при котором мы могли бы сопровождать каждый свой шаг ясным физическим изображением явления, не связывая себя в то же время какой-нибудь определенной теорией, из которой заимствован этот образ... Для составления физических представлений следует освоиться с физическими аналогиями, под которыми я разумею то частное сходство между законами в двух каких-нибудь областях явлений, благодаря которому одна область является иллюстрацией для другой".Приведенные высказывания Максвелла убеждают: только при всестороннем глубоком изучении объектов и явлений возможно познание гармонии природы, породившей человеческий разум. Однако существует ли гармония вне разума? Однозначный ответ на данный философский вопрос дал известный ученый Анри Пуанкаре, профессионально владеющий не только философией, но и математикой и физикой, что придает его высказыванию особую ценность, и тем более, что речь идет о таком неисчерпаемом предмете рассуждений, как гармония природы в математическом понимании. Как бы ни относились рьяные материалисты к высказыванию авторитетного мыслителя Пуанкаре, вряд ли им удастся аргументировано опровергнуть наделенные глубокой мыслью его слова: "Но та гармония, которую человеческий разум полагает открыть в природе, существует ли она вне человеческого разума? Без сомнения - нет; невозможна реальность, которая была бы полностью не зависима от ума, постигающего ее, видящего, чувствующего ее. Такой внешний мир, если бы даже он и существовал, никогда не был бы нам доступен. Но то, что мы называем объективной реальностью, в конечном счете, есть то, что общо нескольким мыслящим существам и могло бы быть общо всем. Этой общею стороной, как мы увидим, может быть только гармония, выражающаяся математическими законами. Следовательно, именно эта гармония и есть объективная реальность, единственная истина, которой мы можем достигнуть; а если я прибавлю, что универсальная гармония мира есть источник всякой красоты, то будет понятно, как мы должны ценить те медленные и тяжелые шаги вперед, которые мало-помалу открывают ее нам...Нам скажут, что наука есть лишь классификация и что классификация не может быть верною, а только удобною. Но это верно, что она удобна; верно, что она является такой не только для меня, но и для всех людей; верно, что это не может быть плодом случайности.В итоге единственной объективной реальностью являются отношения вещей, отношения, из которых вытекает мировая гармония. Без сомнения, эти отношения, эта гармония не могли бы быть восприняты вне связи с умом, который их воспринимает или чувствует. Тем не менее, они объективны, потому что общие и останутся общими для всех мыслящих существ".
5. Развитие естествознания и антинаучные тенденции
Темпы развития.С течением времени и особенно в конце последнего столетия наблюдается изменение функций науки, и в первую очередь - естествознания. Если раньше основная функция науки заключалась в описании, систематизации и объяснении исследуемых объектов, то сейчас наука становится неотъемлемой частью производственной деятельности человека, в результате чего современное производство - будь то выпуск сложнейшей космической техники, современных супер - и персональных компьютеров или высококачественной аудио - и видеоаппаратуры - приобретает наукоемкий характер. Происходит сращивание научной и производственно-технической деятельности. Появляются крупные научно-производственные объединения - межотраслевые научно-технические комплексы "наука - техника - производство", в которых науке принадлежит ведущая роль. Именно в таких комплексах были созданы первые космические системы, первые атомные электростанции и многое другое, что составляет наивысшие достижения науки и техники.В последнее время многие ученые считают, что наука - производительная сила; при этом имеется в виду прежде всего естествознание. Хотя наука и не производит непосредственно материальную продукцию, но всем понятно, что в основе производства любой продукции лежат научные разработки. Поэтому, когда говорят о науке как о производительной силе, принимают во внимание не конечную продукцию того или иного производства, а ту научную информацию - своего рода продукцию, - на базе которой организуется и реализуется производство материальных ценностей.Учитывая такой важный показатель, как количество научной информации, можно сделать не только качественную, но и количественную оценку временного изменения данного показателя и таким образом определить закономерность развития науки.Результаты количественного анализа показывали, что темп развития науки, как в целом, так и для таких отраслей естествознания, как физика, биология и т.п., а также для математики характеризуется приростом научной продукции на 5-7% в год на протяжении последних 300 лет. При анализе учитывались конкретные показатели: число научных статей, изобретений и т.д. Такой темп развития науки можно охарактеризовать и по-другому. За каждые 15 лет (половина средней разницы в возрасте между родителями и детьми) объем научной продукции возрастает в
е
раз (
е
=2,72 - основание натуральных логарифмов). Это утверждение составляет сущность закономерности экспоненциального развития науки.Из данной закономерности вытекают следующие выводы. За каждые 60 лет научная продукция увеличивается примерно в 50 раз. За последние 30 лет такой продукции создано приблизительно в 6,4 раза больше, чем за всю историю человечества. В этой связи к многочисленным характеристикам XX в. вполне оправдано можно добавить еще одну - "век науки".
Страницы:
1
,
2
,
3
, 4,
5
,
6
,
7
,
8
Апрель (48)
Март (20)
Февраль (988)
Январь (720)
Январь (21)
2012 © Все права защищены
При использовании материалов активная
ссылка на источник
обязательна.