Рефераты. Естествознание на молекулярном уровне

/b>

2.1 Неорганическая химия

Неорганическая химия, наука о хим. элементах и образуемых ими простых и сложных веществах, за исключением органических соединений.

Понятие «неорганическая химия» (минер. химия) появилось первоначально для обозначения веществ минерального происхождения.

Основные задачи современной неорганической химии: изучение строения, свойств и химических реакций простых веществ и соединений, взаимосвязи строения со свойствами и реакционной способностью веществ, разработка методов синтеза и глубокой очистки веществ, общих методов получения неорганических материалов.

По изучаемым объектам неорг. химию подразделяют на химию отдельных элементов, химию групп элементов в составе периодичной системы (химия щелочных металлов, щелочноземельных элементов, галогенов, халькогенов и др.), химию определенных соединений тех или иных элементов (химия силикатов, пероксидных соединений и др.), химию элементов, объединенных в группы по исторически сложившимся признакам (напр., химия редких элементов), химию близких по свойствам и применению веществ (химия тугоплавких веществ, интерметаллидов, полупроводников, энергонасыщенных соединений, благородных металлов, неорг. полимеров и др.). Нередко обособляют химию переходных элементов.

Как и многие др. хим. науки, неорганическая химия неразрывно связана с физ. химией, которая может считаться теоретической и методологической основой современной химии, с аналитической химией - одним из главных инструментов химии.

Неорг. химия отчасти пересекается с орг. химией, особенно с химией металлоорганических соединении, бионеорганической химией и др.

Теоретические представления неорг. химии используют в геохимии, космохимии, химии твердого тела, химии высоких энергий, радиохимии, ядерной химии, в некоторых разделах биохимии и агрохимии.

Прикладная часть неорг. химии связана с хим. технологией, металлургией, галургией, электроникой, с добычей полезных ископаемых, производством керамики, строительных, конструкционных и др. неорг. материалов, с обеспечением работы энергетических установок (например, АЭС), с сельским хозяйством, с обезвреживанием промышленных отходов, охраной природы и др.

История неорг. химии тесно связана с общей историей химии, а вместе с ней - с историей естествознания и историей человеческой цивилизации.

Этапными для развития неорг. химии явились работы И. Берцелиуса, который в 1814 опубликовал таблицу атомных масс. А. Авогадро и Ж. Гей-Люссак открыли газовые законы, П. Дюлонг и А. Пти нашли правило, связывающее теплоемкость с числом атомов в соединении, Г.И. Гесс - закон постоянства количества теплоты. Возникла атомно-молекулярная теория.

В 1807 Г. Дэви электрохимически разложил гидроксиды натрия и калия и ввел в практику новый метод выделения простых веществ; в 1834 М. Фарадей опубликовал основные законы электрохимии.

2-я половина - конец XIX в. ознаменовались обособлением физ. химии. К. Гульдберг и П. Вааге сформулировали закон действующих масс. Работы С. Аррениуса, Я. Вант-Гоффа, В. Оствальда положили начало теории растворов.

В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными новые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, йод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутений, ниобий), с помощью введенного в практику спектрального анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс многих химических элементов.

К кон. 1860-х гг. стало известно 63 хим. элемента и большое число разнообразных хим. соединений, однако научная классификация элементов отсутствовала. Основой для систематики явился периодический закон Менделеева, с помощью которого были исправлены атомные массы многих элементов и предсказаны свойства неизвестных в то время веществ. Последние открытия Галлия (П.Э. Лекок де Буабодран, 1875), Скандия (Л. Нильсон, 1879), Германия (К.А. Винклер, 1886), Лантаноидов, благородных газов (У. Рамзай, 1894-98), первых радиоактивных элементов - полония и радия (М. Склодовская, П. Кюри, 1898) блестяще подтвердили периодический закон. При получении астата, актиноидов, курчатовия, нильсбория и элементов с атомными номерами 106 и выше этот закон был использован на практике. Приоритет Менделеева в открытии периодического закона, некоторое время оспаривавшийся Л. Мейером, был закреплен в названии одного из искусственных элементов (менделевия).

Теория строения атома (Э. Резерфорд, 1911; Н. Бор, 1913), введение понятия атомного номера (Г. Мозли, 1914) позволили дать периодическому закону физическое обоснование.

Теоретическая неорганическая химия. Этот раздел неорг. химии рассматривает вопросы хим. связи в неорг. веществах, структуры веществ, их свойства и реакционная способность. Основными в неорг. химии являются периодический закон, закон постоянства состава веществ и др. Однако ключевой проблемой сейчас является природа хим. связи. В неорг. веществах встречаются все виды хим. связи - ковалентная, ионная и металлическая. Теория хим. связи, в частности, рассматривает вопросы природы связи, ее энергии, длины, полярности. Наибольшее распространение получили методы молекулярных орбиталей, наряду с которыми используют метод валентных связей, теорию кристаллического поля и др. Для неорг. химии особенно актуально приложение методов молекулярных орбиталей к твердым телам.

Большое значение придается спектрам в электромагнитном диапазоне (для определения структуры веществ) и магнитным свойствам веществ (в целях создания магнитных материалов). Теоретическая неорг. химия активно использует методы хим. термодинамики и хим. кинетики.

Теоретическая неорг. химия изучает также закономерности образования дефектов кристаллической решетки, влияние дефектов на свойства веществ, исследует кинетику твердофазных процессов.

Некоторые вопросы, являются одновременно и проблемами физики и физ. химии. Например, квантово-химическое описание электронной конфигурации атомов и ионов, проблемы происхождения хим. элементов и их превращений в космосе, создание теории высокотемпературной сверхпроводимости и др.

Прикладная химия. Еще в 18 в. установилась тесная связь между неорганической химией и ремеслами - основой зарождавшейся промышленности. Позднее неорг. химия стала научной базой многих производств, определяющих уровень промышленного развития отдельных стран и всего человечества.

Прикладной частью неорг. химии традиционно считается технология неорг. веществ. Она связана с крупномасштабными производствами серной, соляной, фосфорной, азотной кислот, соды, аммиака, хлора, фтора, фосфора, а также солей натрия, калия, магния и др., диоксида углерода, водорода, различных минеральных удобрений и мн. др. веществ. Большая часть этих продуктов потребляется др. химическими производствами и металлургией.

Прикладная неорг. химия играет существенную роль в развитии важнейших отраслей народного хозяйства. Так, в машиностроении и строительстве широко используют материалы, получаемые из минерального сырья хим. методами. Это, например, металлы и сплавы, минеральные красители, твердые сплавы для режущего инструмента.

2.2 Органическая химия

Органическая химия, наука, изучающая соединения углерода с другими элементами (органические соединения), а также законы их превращений. Название «органическая химия» возникло на ранней стадии развития науки, когда предмет изучения ограничивался соединениями углерода растительного и животного происхождения. Не все соединения углерода классифицируются как органические. Например, СО2, HCN, CS2 традиционно относят к неорг. Условно можно считать, что прототипом орг. соединений является метан СН4.

К настоящему времени число известных орг. соединений превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Многообразие орг. соединений определяется уникальной способностью атомов углерода соединяться друг с другом простыми и кратными связями, образовывать соединения с практически неограниченным числом атомов, связанных в цепи, циклы, бициклы, трициклы, полициклы, каркасы и др., образовывать прочные связи почти со всеми элементами периодичной системы, а также явлением изомерии - существованием разных по свойствам веществ, обладающих одним и тем же составом и молярной массой.

Многообразие и громадное число орг. соединений определяет значение орг. химии как крупнейшего раздела современной химии. Окружающий нас мир построен главным образом из орг. соединений; пища, топливо, одежда, лекарства, краски, моющие средства, материалы, без которых невозможно создание транспорта, книгопечатания, проникновение в космос и прочее, - все это состоит из орг. соединений. Важнейшую роль орг. соединения играют в процессах жизнедеятельности. Отдельный раздел орг. химии составляет химия высокомолярных соединений: по величине молекул орг. вещества делятся на низкомолекулярные (с молярной массой от нескольких десятков до нескольких сотен, редко до тысячи) и высокомолекулярные (макромолекулярные; с молярной массой порядка 104-106 и более).

Орг. химия изучает не только соединения, получаемые из растительных и животных организмов, но в основном соединения, созданные искусственно с помощью лаборатории или промышленного органического синтеза. Более того, объектами изучения компьютерной орг. химии являются соединения, не только не существующие в живых организмах, но которые, по-видимому, нельзя получить искусственно (напр., гипотетический аналог метана, имеющий не природное тетраэдрич. строение, а форму плоского квадрата, в центре которого лежит атом С, а в вершинах - атомы Н).

Классификация органических соединений. Основу орг. соединений составляет незамкнутая (открытая) или замкнутая цепь углеродных атомов; одно или несколько звеньев цепи может быть заменено на атомы, отличные от углерода, - гетероатомы, чаще всего О, N, S. По структуре орг. соед. подразделяют на алифатические соединения - углеводороды и их производные, имеющие открытую углеродную цепь; карбоциклические соединения с замкнутой углеродной цепью; гетероциклические соединения. Углеводороды и их производные, не содержащие кратных связей, относятся к насыщенным соединениям, с кратными связями - к ненасыщенным.

Историческая справка. Истоки орг. химии восходят к глубокой древности (уже тогда знали о спиртовом и уксуснокислом брожении, крашении индиго и ализарином). Однако в средние века (период алхимии) были известны лишь немногие индивидуальные орг. вещества. Все исследования этого периода сводились главным образом к операциям, при помощи которых, как тогда думали, одни простые вещества можно превратить в другие. Начиная с ХVI в. (период ятрохимии) исследования были направлены в основном на выделение и использование различных лекарственных веществ: был выделен из растений ряд эфирных масел, приготовлен диэтиловый эфир, сухой перегонкой древесины получены древесный (метиловый) спирт и уксусная кислота, из винного камня - винная кислота, перегонкой свинцового сахара - уксусная кислота, перегонкой янтаря - янтарная.

Слияние хим. соединений растительного и животного происхождения в единую хим. науку орг. химии осуществил Й. Берцелиус, который ввел сам термин и понятие орг. вещества, образование последнего, по Берцелиусу, возможно только в живом организме при наличии «жизненной силы». Это заблуждение опровергли Ф. Вёлер (1828), который получил мочевину (орг. вещество) из цианата аммония (неорг. вещество), А. Кольбе, синтезировавший уксусную кислоту, М. Бертло, получивший метан из H2S и CS2, A.M. Бутлеров, синтезировавший сахаристые вещества из формалина. В первой пол. XIX в. был накоплен обширный опытный материал и сделаны первые обобщения, определившие бурное развитие орг. химии: развиты методы анализа орг. соединения (Берцелиус, Ю. Либих, Ж. Дюма, М. Шеврёль), создана теория радикалов (Вёлер, Ж. Гей-Люссак, Либих, Дюма) как групп атомов, переходящих неизменными из исходной молекулы в конечную в процессе реакции; теория типов (Ш. Жерар, 1853), в которой орг. соединения конструировались из неорг. веществ - «типов» замещением в них атомов на орг. фрагменты; введено понятие изомерии (Берцелиус).

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.