6.2 Броуновское движение в открытых системах. Молекулярные и турбулентные источники флуктуации
Переход от обратимых уравнений к необратимым, который на всех уровнях описания ведет к уравнениям для флуктуирующих микроскопических переменных: функций распределения в кинетической теории, гидродинамических и термодинамических функций на гидродинамическом и диффузионном уровне описания. Все эти величины в обобщенном смысле можно рассматривать как объекты броуновского движения - броуновские частицы. В связи с этим возникает необходимость изложения ряда вопросов теории броуновского движения в открытых системах. Как мы увидим, существует целая иерархия различных броуновских движений, начиная с наиболее быстрых движений в кинетической теории и кончая наиболее медленными, при которых по мере уменьшения частоты спектральная плотность возрастает. Кроме того, характер броуновского движения сильно меняется по мере удаления от равновесного состояния, когда становятся существенными нелинейные процессы. Это приводит к новым проблемам при использовании уравнений Ланжевена и Фоккера-Планка, в частности, наряду с молекулярными, приходится вводить и турбулентные источники флуктуаций в уравнения Ланжевена.
6.3 Ламинарное и турбулентное движение
В зависимости от относительной роли флуктуационного и упорядоченного движений, а также от числа макроскопических степеней свободы, можно выделить три группы движений. Это, во-первых, хаотическое тепловое движение. В этом случае усредненные макроскопические параметры постоянны, а наличие флуктуаций характеризует - молекулярную - структуру системы. Флуктуации макроскопических характеристик малы и во многих случаях, за исключением, например, броуновского движения малых частиц в жидкости, могут не приниматься во внимание. Ко второй группе можно отнести ламинарное движение, или ламинарные пространственно-временные диссипативные структуры. Они возникают на фоне теплового движения и характеризуются небольшим числом макроскопических степеней свободы. Роль флуктуаций здесь особенно существенна около критических точек перехода от одних диссипативных структур к другим, или, иными словами. При неравновесных фазовых переходах. Наконец, к третьей группе можно отнести турбулентное движение, которое определяется большим числом макроскопических степеней свободы. Турбулентное движение очень разнообразно и может возникать на всех уровнях описания - от кинетического до диффузионного или диффузионно-реакционного. Оно характеризуется большим числом пространственных и временных масштабов. На фоне мелкомасштабного турбулентного движения могут выделяться и когерентные пространственно-временные структуры. При анализе ламинарного и турбулентного движения существенна оценка их относительной степени упорядоченности. Таким образом, турбулентное движение представляется как очень сложное движение в открытых системах, возникающее из менее упорядоченного движения - физического хаоса...
7. Эволюция
Эволюция - это процесс изменения, развития в природе и обществе. Такое понятие является очень общим. В физических внешне замкнутых системах эволюция во времени приводит к равновесному состоянию. Ему отвечает максимальное значение энтропии и максимальная степень хаотичности. Это дает основание в таком случае говорить о деградации. В открытых системах, наряду с деградацией, происходят и процессы самоорганизации. При этом характер процесса зависит от значений внешних управляющих параметров. При наличии одного управляющего параметра для систем, в которых существует равновесное состояние, можно приписать ему нулевое значение. Тогда увеличению управляющего параметра будет отвечать процесс самоорганизации и, напротив, уменьшению - процесс деградации. Ситуация становится более интересной, когда рассматриваемая система не может существовать в состоянии статистического равновесия. Это характерно для биологических, социальных и экономических систем. В этих случаях равновесное состояние следует заменить на состояние, принятое за норму хаотичности. Ниже мы конкретизируем это понятие на примере медико-биологической системы. Итак, самоорганизация не является единственным результатом эволюции. Ни в физических, ни даже в биологических системах не заложено внутреннее стремление к самоорганизации. Эволюция может вести и к деградации. При этом возникает один из основных вопросов Физики открытых систем: Чем определяется выбор одного из двух возможных видов процесса эволюции?
В физике рассматривается, например, эволюция к равновесному состоянию или стационарному (в открытых системах) состоянию. В открытых системах можно выделить два специальных вида процессов эволюции: 1). Управляющие параметры заданы и имеет место временная эволюция к соответствующему стационарному состоянию. В частности, при отсутствии управляющих параметров внешне замкнутая система релаксирует к равновесному состоянию; 2). Управляющие параметры меняются настолько медленно, что при каждом их значении успевает устанавливаться отвечающеее им стационарное состояние. Можно сказать, что в этих случаях имеет место эволюция стационарных состояний в пространстве управляющих параметров. Такие процессы можно назвать квазистационарными. Их частным случаем являются обратимые квазистатические процессы в термодинамике, когда эволюция происходит через последовательность равновесных состояний. Эволюцию по Дарвину можно отнести скорее ко второму классу, когда происходит настолько медленное изменение внешних параметров, что при каждом их значении успевает устанавливаться новое стационарное состояние системы. В качестве изменений внешних параметром могут выступать мутации. Они могут быть как положительными, так и отрицательными. В первом случае новое стационарное состояние является более упорядоченным. Последовательность таких изменений и будет составлять процесс самоорганизации. При отрицательных мутациях - новое стационарное состояние будет более хаотическим. Цепочка таких изменений и будет представлять процесс деградации. Примером эволюции может служить образование последовательности новых структур в процессах самоорганизации. В биологии, согласно теории Дарвина, образование новых структур происходит путем естественного отбора. Известно, что Людвиг Больцман назвал XIX век веком Дарвина, полагая тем самым, что теория эволюции Дарвина, основанная на принципе естественного отбора, является наиболее значительным открытием прошлого века. Такой вывод может показаться неожиданным. Действительно, ведь XIX век очень богат великими открытиями в естествознании, в частности в физике. XIX век, это - век термодинамики, созданной трудами Сади Карно, Рудольфа Клаузиуса и Вильяма Томсона и других замечательных ученых, это век электромагнитной теории Майкла Фарадея и Джеймса Максвелла. В XIX были заложены и основы современной молекулярно-кинетической теории материи, одним из основателей которой был сам Людвиг Больцман. Именно он предложил первое кинетическое уравнение для описания необратимых процессов в газах, которое описывает, в частности, установление равновесного состояния в газе. Он впервые ввел статистическое определение одной из основных характеристик термодинамики - энтропии. Он доказал знаменитую Н-теорему Больцмана, о возрастании энтропии во внешне замкнутой системе. И все же Больцман определил XIX век как век Дарвина. Главное, что определило такой выбор, эта удивительная научная интуиция Больцмана, глубина которой, да и то не в полной мере, становится очевидной лишь в настоящее время. Во времена Больцмана не существовало каких-либо математических моделей биологической эволюции. Более того, отнюдь не была общепринятой предложенная самим Больцманом теория необратимых процессов, Н-теорема. Напротив, вокруг теории Больцмана бушевали страсти. Среди самых активных его оппонентов был и Анри Пуанкаре. Итак, Больцман назвал XIX век веком Дарвина. В этом проявилась вера Больцмана в то, что развитая им кинетическая теория неравновесных процессов будет служить основой и для описания процессов в открытых физических, химических и биологических(!) системах. По мере развития статистической теории открытых систем мы все больше убеждаемся в правоте Больцмана. Каково же соотношение понятий эволюция и самоорганизация?
Изложенное, казалось бы, дает основание считать, что процесс самоорганизации - переход от более хаотического к более упорядоченному состоянию - переход от хаоса к порядку. Такое определение принято многими исследователями и кладется в основу теории самоорганизации. Оно оправдано, несомненно, для класса физических сиcтем, когда в качестве - начала отсчета - можно использовать равновесное состояние - наиболее хаотическое состояние. Для таких систем любое неравновесное состояние более упорядоченно, чем равновесное. Поэтому по мере увеличения значений управляющего параметра степень упорядоченности, хотя, быть может, и не монотонно, возрастает. В этом понимании определение - самоорганизация есть переход от хаоса к порядку -, оправдано. Однако, для многих систем, как физических, особенно биологических, социальных и экономических, равновесные состояния не являются реальными. Для этого класса систем приведенное определение самоорганизации не является оправданным. В этих случаях необходимо пересмотреть определение понятия самоорганизации Говоря о процессах самоорганизации, мы будем иметь в виду процессы, при которых (по приведенным ниже критериям возникают более сложные и более совершенные структуры. При таком подходе возникает вопрос: является ли любой эволюционный процесс процессом самоорганизации? Ответ, естественно, отрицательный, поскольку ни в физических, ни даже в биологических системах не заложено внутреннее стремление к самоорганизации. Действительно, эволюция может вести и к деградации. В физике примером служит переход к равновесному состоянию, которое по Больцману и Гиббсу, является наиболее хаотическим. В биологии происходит деградация биологических структур. Таким образом, самоорганизация - лишь один из возможных путей эволюции.
8. Роль флуктуаций на различных уровнях описания. Флуктуационно-диссипативные соотношения
Флуктуации это -- небольшие нерегулярные, хаотические изменения какой-либо физической величины (т.е. являются случайными факторами самоорганизации). Обычно эти отклонения в физике связывают с тепловыми или квантовыми явлениями. Например, в квантовой механике температура одноатомного газа определяется кинетической энергией атомов. Но из-за столкновений атомов энергия каждого из них не остается постоянной, а все время меняется. Если взять большой объем, то энергия, усредненная по всем атомам, будет практически постоянна. Если же газа в этом объеме мало, то флуктуации энергии будут значительны. Величина флуктуации обратно пропорциональна корню квадратному из числа частиц N.
Страницы: 1, 2, 3, 4, 5, 6, 7