Рефераты. Факторы роста и выживание нейронов

ис. 3. Связывание димера фактора роста нервов с двумя TrkA рецепторами приводит к тому, что домен внутриклеточного белка тирозинкиназы каждого из TrkA рецепторов фосфорилирует остатки тирозина другого TrkA рецептора. Это запускает четыре внутриклеточных сигнальных каскада, которые приводят к росту и дифференцировке. Активация фосфоинозитол-3-киназы (PI 3-kinase) способствует удлинению отростков и их выживанию. Фосфорилирование тирозина SNT приводит к дифференцировке. Активация фосфолипазы C-г (PLC-ф) стимулирует MAP киназы, которые индуцируют экспрессию генов, дифференцировку и рост как непосредственно, так и через фосфорилирование RSK. MAP киназа также активируется через сигнальный каскад, который включает связывание белков SHC, Grb-2, SOS и Ras, а также киназ Raf и МЕК. -- S-- Р04 -- фосфорилирование серина; -- Т -- Р04 -- фосфорилирование треонина; -- Y -- Р04 -- фосфорилирование тирозина.

В самом деле, большое разнообразие нейротрофических белков, в основном вырабатываемых в мышце, как было обнаружено, могут управлять развитием мотонейронов: МНФ, NT-3 и NT-4/5, ИФР (инсулиноподобный фактор роста, IGF, insulin-like growth factor), CNTF (ciliary neurotrophic factor, нейротрофический фактор ресничек), GDNF (glial-derived neurotrophic factor, глиальный нейротрофический фактор), CDF (cholinergic differentiation factor, фактор холинергической дифференцировки, также называемый LIF, leukemia inhibitory factor, фактор подавляющий лейкемию) и ИФР-I (инсулиноподобный фактор роста 1). При введении их эмбриону эти белки предупреждают гибель мотонейронов, которые без этих факторов неминуемо погибли бы. Однако существует и несколько доказательств, включая анализ мутантных мышей, у которых отсутствует один или несколько подобных белков или их рецепторов, которые показывают, что ни один из этих факторов не является необходимым для выживания мотонейрона во время развития. Наилучшим кандидатом для фактора, регулирующего выживание мотонейрона, является еще пока неидентифицированный лиганд рецептора CNTF .

Избыточная продукция нейронов, после которой следует период гибели клеток, является характерной чертой развития нервной системы позвоночных. Некоторые из нейронов, которые погибают, возможно, не смогли образовать синапсов, или образовали их с неподходящей клеткой-мишенью. В подобных случаях гибель клеток связана с особенностью иннервации. Однако большинство клеток, которые гибнут, достигают и иннервируют правильные клетки-мишени. Таким образом, гибель клеток является основным механизмом, который поддерживает равновесие между количеством нейронов и их мишеней.

Неожиданной находкой явилось то, что ингибиторы образования мРНК или синтеза белка предотвращали гибель нейронов в отсутствие необходимых им нейротрофинов. Результаты этих и более поздних экспериментов показали, что гибель нейронов типично происходит путем апоптоза. Апоптоз -- это процесс, который активирует внутреннюю «суицидальную» программу клетки, которая приводит к упорядоченному (запрограммированному) распаду ДНК и белков в клетке. Существенно, что для этого необходим предварительный синтез протеолитических ферментов или их активаторов.

Уменьшение числа связей и исчезновение полинейрональной иннервации

После того как популяция нейронов, иннервирующих определенную мишень, уменьшается благодаря гибели клеток, оставшиеся нейроны конкурируют друг с другом за синаптическую территорию. Это конкурирование обычно приводит к потере некоторых первично образованных веточек и синапсов («обрезка»). Уменьшение числа связей обеспечивает механизм для формирования правильной и полной иннервации мишени определенной популяцией нейронов. В некоторых случаях механизм уменьшения числа связей также обеспечивает механизмы коррекции ошибок; в других случаях он отражает стратегию поиска пути аксоном.

Особо яркий пример конкурентного уменьшения числа связей можно увидеть в развивающейся скелетной мышце. У взрослых животных каждый мотонейрон иннервирует группу до 300 мышечных волокон, формируя двигательную единицу , но каждое мышечное волокно иннервируется только одним аксоном. Однако в развивающейся мышце мотонейроны бурно ветвятся, так что каждое мышечное волокно в итоге иннервируется аксонами от нескольких мотонейронов (рис. 4), что называется полинейрональной иннервацией. В каждом развивающемся мышечном волокне синаптические окончания всех аксонов разбросаны вокруг одного участка, вблизи скоплений рецепторов АХ и других компонентов постсинаптического аппарата. По мере развития веточки аксонов исчезают, что приводит в конечном итоге к формированию взрослого паттерна. Этот процесс не вызывает гибель клетки (которая обычно происходит на более ранних стадиях развития), а только уменьшение количества мышечных волокон, иннервируемых каждым из мотонейронов.

Рис. 4. (Рис. 4В, 4D см. на цветной вклейке после с. 640.) Полинейрональная иннервация и ее исчезновение в нерв но мышечном соединении позвоночных. (А) Во время развития эмбриона веточки аксонов моторных нейронов иннервируют множество мышечных волокон, и каждое мышечное волокно иннервируется несколькими мотонейронами (полинейрональная иннервация). (В) Флуоресцентная микрограмма нервно-мышечного соединения мыши (стадия Е18), показывающая распределение терминалей двух аксонов, каждый из которых помечен при помощи липофильной метки. В период полинейрональной иннервации терминальные ветвления аксонов мотонейронов, иннервирующих определенное мышечное волокно, переплетаются в областях отдельных синапсов. (С) После рождения полинейрональная иннервация исчезает по мере того, как веточки аксонов подвергаются ретракции, в результате чего каждое мышечное волокно получает иннервацию только от одного мотонейрона. (D) Флуоресцентная микрофотография нервно-мышечного соединения мыши во время исчезновения полинейрональной иннервации. Два аксона, иннервирующих синапс, были помечены как в В. Все терминали одного аксона исчезли, и сам аксон подвергся ретракции.

Исчезновение полинейронной иннервации регулируется конкуренцией между аксонами различных мотонейронов за синаптическое пространство на мышечных клетках. Наиболее ярким примером являются эксперименты на развивающихся мышцах лапки крысы. Когда все кроме одного моторные аксоны, иннервирующие эту мышцу, были перерезаны на раннем этапе развития, оставшийся аксон подвергся ветвлению и начал иннервировать большое количество волокон данной мышцы. В то время, когда обычно происходит исчезновение полинейрональной иннервации, ни один синапс не исчез. В отсутствие конкуренции для выживания мотонейрон поддерживает контакты с каждой миофибриллой, которую он ранее иннервировал. В экспериментах Лихтмана с коллегами были получены яркие картинки этого процесса при помощи визуализирования нервных терминалеи у животных in vivo при помоши витальных красителей и наблюдения за изменениями синаптической структуры во время исчезновения синапсов. Подобная же ретракция избыточного количества связей была показана в автономном ганглии неонатальных крыс и морских свинок. Каждая ганглионарная клетка первоначально получает большое количество связей, больше пяти, однако к возрасту 5 недель из них обычно остается только одна.

Активность нервов и исчезновение синапсов

Физиологические эксперименты показывают, что активность нейронов играет определенную роль в исчезновении синапсов, влияя как на интенсивность, так и на и результат конкуренции между терминалями аксонов. Стимулирование мышцы через нерв при помощи имплантированных металлических электродов увеличивает интенсивность исчезновения синапсов. Уменьшение активности путем добавления тетродотоксина в пространство вокруг нерва для блокирования потенциалов действия приводит к ингибированию синаптической передачи и замедлению исчезновения синапсов. На мышцах, которые получают сигналы от аксонов двух различных нервов, возможно проведение интересных экспериментов по блокированию проведения импульсов избирательно в одном из нервов. В таких случаях неактивные нейроны не могут, очевидно, нормально конкурировать: аксоны блокированных нейронов иннервируют двигательных единиц меньше, чем в норме; аксоны активных нервов иннервируют волокон больше, чем обычно. Однако доминирование неблокированных нервных волокон не полное, что говорит о роли других факторов, кроме активности, в исчезновении синапсов.

Рис. 5. Конкуренция между веточками одного мотонейрона, зависящая от активности. (А, В) Флуоресцентные микрофотографии нервно-мышечного соединения грудинососцевидной мышцы мыши, показывающие пресинаптическую терминаль (А), окрашенную при помощи 4-Di-2-Asp (который окрашивает митохондрии) и постсинаптическую мембрану (В), окрашенную при помощи родамин-связанного ? бунгаротоксина в низкой дозе (который окрашивает рецепторы АХ). (С) Рецепторы АХ в нижней части соединения блокированы при помощи насыщающей дозы немеченного ?-бунгаротоксина, что приводит к блокаде нервно-мышечной передачи селективно в этой области синапса. (D, Е) Через 31 день тот же самый синапс, что показан на А и В, был заново исследован. Терминаль аксона (D) и постсинаптические рецепторы (Е) исчезли из блокированной области. Таким образом локальная блокада передачи приводит к локальному исчезновению синапса.

Конкуренция в зависимости от активности также происходит на уровне веточек отдельного аксона двигательного нейрона. Если в небольшой области зрелого синапса произвести точечную аппликацию бунгаротоксина, то неактивный регион синапса подвергается элиминации (рис. 5). Если же блокировать весь синапс, его исчезновения не происходит. Молекулярные механизмы этой конкуренции, а также механизмы, посредством которых активность влияет на исчезновение синапсов, пока не открыты.

Сходная конкуренция В этом эксперименте среда во всех трех секциях изначально содержала ФРН. Клетки помещались в центральную секцию, а их отростки направлялись в каждую из двух боковых секций. ФРН затем удалялся из одной из боковых секций. Аксоны в центральной секции и в боковой секции, которая содержала ФРН, выживали, а аксоны в секции, из которой был удален ФРН, подвергались дегенерации (рис. 4С). Таким образом, в пределах ткани-мишени конкуренция между терминалями аксона за ограниченное количество нейротрофинов может приводить к изменениям синаптического ветвления аксонов, способствовать росту одних веточек и дегенерации других.за синаптические мишени возникает во время развития нервных путей в ЦНС. Примером может служить образование глазодоминантных колонок в зрительной коре, где аксоны из ядра ЛКТ, несущие информацию от разных глаз, первоначально значительно перекрываются в слое 4 коры, но затем формируются колонки правого и левого глаза. Таким образом, паттерн активности терминалей от обоих глаз играет решающую роль в определении результата этой конкуренции.

Нейротрофины и уменьшение количества связей

Уменьшение количества связей может возникать вследствие конкуренции за ограниченное количество трофических факторов, вырабатываемых клеткой-мишенью. Например, при развитии зрительной коры добавление избыточного количества МНФ блокирует образование колонок глазного доминирования, предотвращая потерю веточек аксонами ЛКТ. Эксперименты на симпатических нейронах, выращиваемых в трехсекционных камерах, могут также быть примером того, что обеспечение нейротрофинами может определять выживание или гибель индивидуальных веточек нейронов.

Общие размышления о нейронной специфичности

В последнее время наблюдается значительный прогресс в нашем понимании того, как нервная клетка находит свои мишени и устанавливает связи. Однако когда начинаешь рассуждать о несчетном количестве связей, которые должны сформироваться во время развития нервной системы, проблема нервной специфичности кажется просто пугающей. Даже банальная аналогия имеет очень сильный эффект. Представим, что мы не знаем ничего об устройстве и работе почтовой системы. Глава этой книги о нервной системе, без иллюстраций, отправляется из Триеста, Италия в Сандерланд, Массачусетс, куда она доходит за несколько дней. Как это происходит? Автор этой книги знает только ближайший к нему почтовый ящик и даже не знает, где находится почтовое отделение его района. Почтовый работник, который вынимает письма из ящика, знает, где находится почтовое отделение; там есть клерк, который может не знать, где находится Сандерланд, однако он знает, что посылку надо послать в аэропорт, и так далее, в нужную страну, город, улицу, здание и в конце концов конкретному человеку. Если этого не достаточно, то иллюстрации к главе высылаются из Денвера и Балтимора по тому же адресу, и они приходят почти одновременно с текстом из Триеста. После чего почта идет через те же самые почтовые ящики и отделение в обратном направлении к исходным отправителям.

Важной особенностью этой аналогии является то, что проблема кажется непостижимой на первый взгляд. Конечно, можно разгадать эту загадку с почтой, следуя за письмом шаг за шагом, пока оно не достигнет своего адресата. Это позволит выявить некоторые моменты в логике и структуре организации почты (не раскрывая сущность создателя этой системы). На каждом ее шаге выполняется ограниченное количество инструкций и используется ограниченное количество средств.

Некоторые механизмы нервной специфичности могут быть похожи на эту систему. Ганглиозная клетка сетчатки посылает свои отростки за пределы глаза, где они образуют зрительный нерв вместе с отростками других ганглиозных клеток сетчатки. Зрительный перекрест представляет следующую точку выбора, где решение о том, к какому, правому или левому, ЛКТ должен направляться отросток, может быть принято на основе химических сигналов. В ЛКТ аксоны сетчатки могут организовываться и иннервировать мишени основываясь на градиенте молекул-репеллентов. Аксоны нейронов ЛКТ подобным же образом следуют к своим мишеням в коре, останавливаясь на пути для формирования временных связей с промежуточными нейронами. Таким образом, задача по формированию специфических связей между ганглиозными клетками сетчатки и нейронами зрительной коры, кажущаяся такой сложной, может быть разбита на серию относительно простых, независимых шагов. Более того, при формировании связей во время развития расстояния между шагами очень малы; пути значительно удлиняются по мере созревания нервной системы.

Выводы

• В ЦНС позвоночных судьба развивающихся нейронов зависит в первую очередь от их расположения в росгрокаудальном направлении и уже затем от расположения в дорзовентральном направлении. Нох семейство гомеотических генов определяет идентифицирование клеток в зависимости от расположения в рострокаудальном направлении в заднем мозге. Белок, называемый Sonic hedgehog («Звучащий ежик»), синтезируемый в области хорды, управляет судьбой клеток, расположенных вентрально вдоль нервной трубки.

• Сигналы, управляющие дифференцировкой клеток, очень часто передаются через рецептор, связанный с тирозинкиназой, активирующей сложные внутриклеточные сигнальные каскады, которые приводят к изменениям в экспрессии генов. Примером подобной регуляции является развитие фоторецептора Drosophila.

• В коре ГМ млекопитающих развитие происходит таким способом, что нейроны, расположенные в более глубоких слоях, рождаются первыми.

• Нейроны нервного гребня возникают у края нервной складки и мигрируют из нервной трубки, образуя ПНС, пигментные клетки, а также кости черепа.

• Постоянное деление стволовых нервных клеток в ЦНС взрослых птиц и млекопитающих приводит к образованию новых нервных клеток.

• Кончик растущего аксона вытягивается, образуя конус роста.

• Поверхность клеток и молекулы адгезии, расположенные во внеклеточном матриксе, управляют конусом роста при помощи привлекающих и отталкивающих механизмов, действующих на короткой дистанции.

• Нетрины играют роль хемоаттрактантов, а семафорины -- хеморепеллентов, действующих на большой дистанции, для многих типов аксонов.

• Эфрины (Ephrines) и Eph семейство рецепторов, связанных с тирозинкиназой, при помощи хемореппелентных механизмов управляют процессом поиска пути нервом, миграцией клеток и образованием связей между клетками.

• При соприкосновении конуса роста с мышечной клеткой в течение нескольких последующих минут устанавливается функционирующая нервно-мышечная передача.

• Выделение агрина из пресинаптических терминалей вызывает образование постсинаптической специализации в скелетной мышце.

• Нейронам для выживания и дифференцировки необходимы различные трофические факторы.

• Запрограммированная гибель нейронов довольно частое явление в развитии нервной системы.

• Синаптические связи, установленные однажды, в дальнейшем могут изменяться для обеспечения надежной и полной иннервации своей мишени. Перемоделирование связей осуществляется на основе конкуренции между терминалями аксона за нейротрофические факторы, выделяемые клеткой-мишенью в зависимости от активности терминалей.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.