Влияние легких аэроионов на рецепторы кожи способно изменить тонус центральной нервной системы и повысить биоэнергетику организма в целом. При этом электростатические системы кожи и крови непрерывно обмениваются своими электрическими зарядами, восстанавливая биоэнергетический потенциал и обмен веществ. Эффект аэроионизации особенно усиливается при использовании лазерной терапии. Квантовая энергия, являясь мощным биостимулятором, регулирует биохимические реакции на фоне насыщения тканей отрицательно заряженным кислородом.
Известны случаи воздействия изменений магнитных полей в геопатогенных зонах Земли (Курская магнитная аномалия, на Алтае, Саянах, в Узбекистане, в так называемой Пермской зоне и других подобных районах) на организм человека: в крови увеличивалось содержание лейкоцитов, снижалась частота сердечных сокращений, уменьшалась амплитуда сигнала ЭКГ, ухудшались память, реакция, внимание, наступало обострение многих хронических болезней. Отмечалось влияние смены знака в межплазменном магнитном поле Земли (ММП) на физиологические и психологические процессы: в отрицательных областях поля хуже делятся бактерии, ухудшается психическое состояние, чаще инфаркты у людей и т.д.
На большом статистическом материале также показано, что изменение состояния ММП в год рождения человека и год, предшествующий этому событию, заметно влияет на изменение роли левого или правого полушарий мозга в психической деятельности человека, образование логического или образно-интуитивного типа мышления, изменение числа левшей и правшей и т.д. []. Экспериментально обнаружено влияние ЭМП на процессы мышления: в случае недостатка или избытка электромагнитных колебаний определенной частоты наблюдалось ухудшение работы мозга человека.
Существенно влияние не только естественных источников ЭМП, но и техногенных ЭМП. Уже 10 лет назад выработка электроэнергии во всем мире составляла около Дж, что сопоставимо с энергией, выделяемой в результате сейсмических процессов на Земле за год. Линии электропередачи (ЛЭП) и всевозможные устройства радиосвязи также непосредственно влияют на биоту и здоровье людей. Энергия, выделяемая в радиодиапазоне в результате деятельности человека, сейчас становится сравнимой с энергией Солнца в видимом диапазоне спектра. Таких примеров влияния внешнего ЭМП на организм можно привести достаточно много, изучение этих процессов интенсивно продолжается во всем мире.
Нам же для общего понимания проблемы достаточно осознания реального факта воздействия внешних физических полей на живой организм, их взаимодействия с внутренними полями и возможности получения и управления информацией этого взаимодействия. В частности, практически все виды ЭМП могут быть использованы для диагностических и лечебных целей. Общим физическим принципом такого лечения, по-видимому, можно считать концентрацию энергии на основных органах и тканях. Более подробную информацию по всем затронутым вопросам можно получить в имеющейся биологической и медицинской литературе.
Физические поля биологических объектов, мнение Гуляева Юрия Васильевича и Годика Эдуарда Эммануиловича.
Вокруг любого биологического объекта в процессе его жизнедеятельности возникает сложная картина физических полей. Их распределение в пространстве и изменение во времени несут важную биологическую информацию, которую можно использовать, в частности, в целях медицинской диагностики.
Прежде всего сформулируем, о каких полях идет речь.
Естественно, что биологический объект, как любое физическое тело, должен быть источником равновесного электромагнитного излучения. Для тела с температурой около 300 К такое тепловое излучение наиболее интенсивно в инфракрасном диапазоне волн. В этом диапазоне биологический объект, например человек, излучает очень большую мощность - свыше 10 мВт с квадратного сантиметра поверхности своего тела, т.е. в целом более 100 Вт. Это излучение далеко уходит от человека, попадая в «окно» прозрачности атмосферы (длина волны 8-14 мкм).
Следует подчеркнуть, что нас интересуют не сами по себе электромагнитные излучения биологических объектов, а возможность переноса по этим каналам информации, связанной с работой внутренних органов. Например, инфракрасное излучение промодулировано физиологическими процессами. которые задают распределение и динамику температуры поверхности тела.
Следующий канал (диапазон волн) - радиотепловое излучение, несущее информацию о температуре и временных ритмах внутренних органов человека. Так, в дециметровом диапазоне волн удается регистрировать сигналы с глубины до 5-10 см. На более коротких волнах глубина, с которой получается информация, уменьшается, однако улучшается пространственное разрешение. По радиотепловым изображениям на различных длинах волн с помощью достаточно сложной цифровой обработки можно восстановить пространственное распределение температуры в глубине биообъекта.
Низкочастотные электрические поля (с частотами до 1 кГц) связаны, как правило, с электрохимическими (в первую очередь транcмембранными потенциалами, отражающими функционирование различных органов и систем биообъекта (сердца, желудка и др.). К сожалению, низкочастотные электрические поля практически полностью планируются высокопроводящими тканями биообъекта. Это затрудняет решение обратных задач по определению источников таких полей на основе измерений электрического потенциала вблизи поверхности тела.
На тех же частотах должны наблюдаться и магнитные поля, связанные с токами в проводящих тканях, сопровождающими физиологические процессы. Для магнитных полей (в отличие от электрических) ткани биологического объекта не являются экраном, поэтому, регистрируя магнитные поля, можно с большей точностью локализовать их источники. Это, в частности, представляет большой интерес для исследования деятельности мозга. Сейчас работы такого рода, сулящие большие перспективы для медицинской диагностики, стали широко развиваться и мировой пауке.
Если говорить о более высоких частотах, то в оптическом, ближнем инфракрасном и ближнем ультрафиолетовом диапазонах должны наблюдаться сигналы биолюминесценции, обусловленной протекающими и организме биохимическими реакции. Это слабое свечение тоже весьма информативно: оно позволяет контролировать темп биохимических процессов.
Наш организм хорошо прозрачен для акустических волн с частотами до нескольких мегагерц. В связи с этим исключительно интересно изучение собственных акустических сигналов, выходящих из глубины организма. Такие исследования включают прослушивание организма в инфразвуковом диапазоне, дающее важную информацию о механическом функционировании внутренних органов, мышц и т.д. Высокочастотные акустические сигналы (в том числе шумового характера) могут быть связаны с возможными источниками на клеточном и молекулярном уровнях. Принципиально важна возможность локализации источников акустического излучения с достаточно высоким пространственным разрешением, так как длина акустической волны намного меньше, чем электромагнитной той же частоты.
Наконец, помимо названных каналов, важны измерения состава и физико-химических характеристик среды, окружающей биологический объект. В процессе метаболизма биологический объект вносит в нее возмущения - изменяет газовый и аэрозольный состав, концентрацию ионов. При этом изменяются проводимость и диэлектрическая проницаемость, коэффициент преломления среды.
Изучение физических полей биообъектов методологически очень близко к пассивному дистанционному зондированию Земли, атмосферы и т.д. В применении таких методов накоплен большой опыт. Нет необходимости объяснять, сколь важную информацию о структуре и функционировании объекта они дают.
С точки зрения дистанционного зондирования биологические объекты имеют ряд принципиальных отличий от обычных физических объектов. Состояние биообъекта существенно нестационарно. По этой причине картину его физических полей можно изучать лишь путем привязки к быстро меняющемуся психофизиологическому состоянию организма, для чего одновременно с физическими измерениями физиологи должны регистрировать различные физиологические параметры биообъекта. Кроме того, любой биообъект - динамическая саморегулирующая система, поэтому в картине его физических полей должны существенно проявляться характеристики регуляторных систем гомеостаза, исследование которых также невозможно без тесного сотрудничества с физиологами.
Эти отличия выдвигают специфические требования к аппаратуре. Из-за нестационарности биообъектов необходимо регистрировать сигналы по многим каналам одновременно, включая электрофизиологический контроль. Для получении пространственной структуры поля в каждом канале необходимо использовать матричный или сканирующие антенны. Аппаратура должна быть достаточно быстродействующей, чтобы успевать регистрировать сигналы в динамике, т.е. быстрее, чем изменяется состояние объекта. Практически во всех каналах необходимо тщательное экранирование от помех.
Наша задача состоит не в разработке принципиально новой аппаратуры, а в применении современной техники дистанционного зондирования в целях исследования биологических объектов и, главное, в создании методики таких исследований. Как правило, технику приходится модернизировать с учетом особенностей биологического объекта, разрабатывать отдельные элементы и узлы. При этом используется богатый опыт, накопленный при разработке разнообразных датчиков физических полей (полупроводниковых, сверхпроводниковых, фотоэмиссионных и др.), а также аппаратуры для пассивного зондирования.
К настоящему времени создана аппаратура для исследования электрических полей биологического объекта. 13 электрически экранированной комнате (клетке Фарадея) дистанционно регистрируется электрокардиограмма. Для этого достаточно поднести руку к антенне - потенциальному зонду - на расстояние до 10 см.
Дистанционно (на расстояниях до 2 м) регистрируются так называемые баллистограммы. Работа внутренних органов (например, легких, сердца и др.) вызывает сотрясения поверхности грудной клетки, отражающие механические ритмы, свойственные этим органам. А поскольку на поверхности тела всегда есть статический заряд, то он, двигаясь вместе с грудной клеткой, приводит к появлению на потенциальном зонде значительных электрических сигналов.
Наша аппаратура дистанционно регистрирует и более тонкие сигналы - микротремор мышц (миограмму), вариации поля поверхностного заряда, связанные с изменениями электрических параметров кожи. Совместно с медиками начаты исследования возможностей использования этих сигналов для дистанционной медицинской диагностики.
На основе тепловизорной системы и специализированного микропроцессора для обработки изображений создан комплекс аппаратуры, регистрирующий инфракрасное излучение в диапазонах 3-5 и 8-14 мкм. Комплекс позволяет получать термограммы биообъекта с высокой чувствительностью (0,05 К).
Следует отметить, что в медицине тепловидение пока используется односторонне. Термограммы, как правило, сравнивают с некими установленными ранее нормалями и по наличию отклонений фиксируют патологию.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8