Рефераты. Физический импринт

p align="left">Эти органы расположены в двух областях: один между головой и грудью, другой между грудью и брюшком. Когда пчела прилетает к затененному улыю, где не видно солнца, она переводит собранную в полете информацию на язык, использующий направление силы тяжести, а именно -- горизонтальное направление полета относительно положения солнца изображается как направление танца в вертикальной плоскости относительно оси гравитации. Пчела в своем танце поднимается вверх, проявляя так называемый отрицательный геотаксис. Расстояние до источника пищи обозначается длительностью колебательных движений во время танца.

Упомянутые выше органы действительно функционируют как рецепторы гравитации: это показал анализ поведения пчел после перерезки соответствующих нервов. Такие пчелы полностью утрачивали способность к ориентированному танцу в улье.

Подобную способность к преобразованию ориентации на освещение в направление относительно силы тяжести обнаруживают и другие виды насекомых: муравьи и жуки. Существуют и различия в этом отношении между видами, показывающие, что механизмы восприятия гравитации у них неодинаковы. Эти наблюдения и опыты свидетельствуют о влиянии гравитации на поведение животных.

Свет и электромагнитное излучение

Спектр электромагнитного излучения весьма широк -- он простирается от компонентов космических лучей до радиоволн. Видимый свет занимает узкую полосу в средней области спектра. Во Вселенной существуют два вида равномерно рассеянного излучения: рентгеновы лучи и микроволны. Рентгеновы лучи наполняют Вселенную диффузным свечением равной интенсивности во всех направлениях. Столь же равномерно распределены в пространстве и микроволны. Напротив, лучи видимой, ультрафиолетовой, инфракрасной и радиоволновой областей электромагнитного спектра в основном испускаются небесными телами: звездами и галактиками.

Микроволновое свечение считают реликтом Большого Взрыва, происшедшего при возникновении Вселенной. Происхождение фона рентгеновых лучей труднее поддается объяснению, но возможным их источником могут быть отдаленные квазары. Последние представляют собой нвазизвездные объекты, которые в отличие от обычных звезд являются источниками интенсивных радиоволн и отдаляются от Земли с огромными скоростями.

Эти виды излучений уже присутствовали во Вселенной в период появления организованных форм жизни, и следует поэтому считать, что они внесли вклад в становление этих форм.

Фотоморфогенез

Путь к пониманию фотоморфогенеза открыло изучение светочувствительности семян латука. Семена эти прорастают при непродолжительным облучении их красным светом, но последующее действие на них света крайнего красного участка спектра предотвращает прорастание. По-видимому, в семенах содержится фоторецептор, принимающий одну из двух конформаций; при одной он поглощает свет в окрестности 660 нм, а при другой -- в крайней красной области спектра. Оказалось, что именно к такому внутримолекулярному переходу способен фитохром, существующий в двух альтернативных формах.

Система фитохрома регулирует широкую группу реакций различных растительных организмов: водорослей, мохообразных, папоротниковых, голосеменных и покрытосеменных. Из таких реакций можно отметить: появление листвы, удлинение междоузлия стебля, появление зачатков корней, прорастание спор.

Для осознания того, что эволюцию детерминируют чисто физические факторы, важен следующий экспериментальный факт: эффекты светопоглощения в узких спектральных полосах проявляются не только в виде биологических реакций органов, но могут наблюдаться также на клеточном и молекулярном уровнях. К числу фотоморфогенетических реакций относятся также: подвижность хлоропластов, синтез ферментов, синтез антоцианина, изменения проницаемости мембран. Именно этн четыре вида процессов играют решающую роль в клеточной дифференцировке и эволюции.

Растительные ткани способны проводить свет.

Было показано, что этиолированные ткани ряда растений функционируют подобно пучкам оптических волокон и способны проводить когерентные световые лучи на расстояние не менее 20 мм. Свет при этом распространяется вдоль тканей, претерпевая полное внутреннее отражение. Это показано для фасоли золотистой, овса, кукурузы. Даже кратковременное освещение кончика колеоптиля овса обычным светом может индуцировать морфогенез задолго до появления ростка из почвы. Проводят свет сами клетки, а не ^клеточные стенки.

Как стало известно с некоторых пор, достаточно освещать один только лист при определенных условиях, чтобы повлиять на все растение. Теперь можно объяснить это явление обнаруженными светопроводящими свойствами растительных тканей.

Растения способны «видеть» свет.

Физиологи растений были вынуждены признать, что растения способны «видеть». Бьерн подробно обсуждал сходства и различия растений и животных с этой точки зрения. Его работа озаглавлена: «Как растения видят». У растений нет ни глаз, ни нервной системы, но они обладают хорошо развитым «зрением». Животные с помощью зрения обнаруживают пищу, тогда как для растений свет сам по себе служит источником пищи. Различия же зрения животных и «зрения» растений заключаются в следующем.

Животные и человек с помощью зрения определяют положение предметов и наблюдают за их передвижением, но не очень успешно оценивают интенсивность света и его спектральный состав. Растения же получают с помощью зрения информацию четырех видов: 1) интенсивность света; 2).периодичность освещения; 3) спектральный состав света; 4) преимущественное направление его распространения.

Основной функцией хлорофилла является его участие в фотосинтезе, но он играет роль и в определении интенсивности света. Он влияет на открывание и закрывание устьиц на поверхности листа. Для оценки периодичности освещения растения используют фитохром. Другое соединение -- криптохром -- дает растению возможность улавливать направление лучей света. Его спектральный состав оценивается с помощью фико-цианина и аллофикоцианина.

Фотопериодизм и регуляция размножения у растений

Явление фотопериодизма открыли Гарнер и Аллард. Соотношение длительности светлого и темного периодов суток определяет время цветения. По реакции на долготу дня выделяют три группы растений: растения короткого, длинного и нормального дня. Основная роль фотопериодизма заключается в инициации цветения -- явления, имеющего решающее значение для воспроизведения вида. Кроме начала цветения фотопериодизм влияет и на другие процессы. Долгие дни способствуют росту корней георгина и побегов земляники.

Таким образом, размножением и ростом растений управляет простой физический фактор -- свет.

Фотопериодизм регулирует размножение у животных.

Продолжительность светового дня влияет на ряд сезонных физиологических реакций у беспозвоночных и позвоночных, включая млекопитающих. Длинные дни стимулируют окукливание у галлиц, откладывание яиц в диапаузе у шелковичного червя и созревание гонад у различных видов ящериц, птиц и млекопитающих.

Короткие дни стимулируют развитие тли из оплодотворенных яиц, течку у ряда млекопитающих. С продолжительностью дня связывают также миграцию птиц, зимнюю спячку животных, изменение окраски волосяного покрова у млекопитающих. Итак, свет обусловливает репродуктивные процессы и у высокоорганизованных существ -- млекопитающих.

Температуру ощущают и растения, и животные.

Пшеница -- как озимая, посеянная осенью, так и яровая, посеянная весной, -- зацветает следующим летом. Однако озимые пшеница или рожь, посеянные весной, не цветут. Установлено, что необходимым условием для цветения этих зерновых является пребывание их при низкой температуре во время прорастания или последующего развития.

Позднее было показано, что обработку холодом, требующуюся семенам озимой пшеницы, можно проводить искусственно непосредственно перед весенним севом. Этот прием, именуемый яровизацией, выгоден экономически. Он иллюстрирует решающее влияние температуры на развитие растений и на клеточную дифференцировку. После яровизации всем формирующимся в дальнейшем тканям передается новое физиологическое состояние. Оно не утрачивается при последующих клеточных делениях.

У животных имеются специализированные клетки, чувствительные к температуре, -- терморецепторы. Одни из них находятся на поверхности тела и дают информацию о температуре среды; другие расположены во внутренних органах и управляют механизмами, регулирующими температуру тела у млекопитающих и птиц. Гремучая змея способна обнаруживать тепловое излучение мыши на расстоянии 40 см от нее, если температура тела мыши на 10° выше, чем температура среды.

Температура и канализация путей эволюции

Температура относится к числу факторов, влияющих на фотосинтез. Участвующие в нем ферментативные темновые реакции сильно зависят от температуры. Она влияет и на раскрывание устьиц у растений, считающееся защитным механизмом против перегрева. Зависят от температуры скорость роста органов растений и их движения. В ответ на ее изменения происходит раскрывание и закрывание цветка тюльпана. Температура, как и свет, представляется решающим фактором в механизме регуляции роста и развития.

Температура влияет на пол у рыб.

Считают, что пол определяется исключительно половыми хромосомами или их взаимодействием с аутосомами. Пол, таким образом, фиксируется при зачатии; соотношение полов у потомства составляет приблизительно 1:1. Однако пол может зависеть и от таких физических факторов, как температура. Обнаружено, что у рыбы Menidia me-nidia формирование пола в критической фазе личиночного развития находится и под генетическим, и под температурным контролем. Отношения полов у потомства, полученного из яиц, которые выдерживали при двух температурных режимах -- от 11е до 19 °С и от 17° до 25 °С-- существенно изменялись. Было показано, что различные материнские генотипы значительно варьировали и расходились по своей реакции на температурную обработку. Такое же явление характерно для черепах и беспозвоночных. Считается, что пол угря, у которого не идентифицированы половые хромосомы и отношение полов отклоняется от 1:1, как и у Menidia, определяется в основном внешними факторами.

Электрические свойства: электропроводность и ионная специфичность

Электрические свойства лежат в основе многих клеточных процессов; один из них -- избирательное связывание ионов. Свободные ионы в растворе электростатически взаимодействуют с центрами связывания в макромолекулах и мембранах. Такие взаимодействия приводят к специфичному связыванию ионов, существенному для активации ферментов и для мембранного транспорта.

Электрические поля в растительных и животных организмах

Исследование передвижения молекул ауксина в тканях под действием гравитационных сил привело к обнаружению электрического потенциала, который появляется у стеблей и корней в горизонтальном положении. Разность потенциалов составляет от 5 до 20 мВ; нижняя сторона тканей заряжена положительно, верхняя -- отрицательно. Причиной возникновения электрического поля служит перемещение анионов диссоциированного ауксина. Облучение красным светом приводит к быстрым изменениям электрического потенциала в ряде органов растений.

У животных электрические свойства и связанные с этим процессы выражены в значительно большей степени, чем у растений. У рыб имеются специализированные клетки -- электрорецепторы, улавливающие электрические токи в окружающей морской воде. Электрорецепторы в значительной мере служат для ориентировки, коммуникации и для обнаружения добычи. У электрического угря имеются специальные органы, состоящие из модифицированных мышечных тканей; они генерируют мощные электрические разряды. У электрических скатов рода Torpedo зарегистрированы электрические токи напряжением 200 В и мощностью 2000 Вт.

Электрические токи влияют на клеточную дифференцировку.

В ходе оплодотворения яйца возникает электрический ток. В большей части случаев полиспермия блокируется у яиц двумя способами: первый имеет электрохимическую природу, второй заключается в образовании белковой оболочки. Как только сперматозоид прикрепляется к поверхности яйца, возникает электрический ток длительностью около 30 с. Такое блокирование сходно с химическим механизмом реакции нервных клеток на возбуждающие импульсы. Поток ионов от сперматозоида проникает через ионные каналы в мембране яйца, потенциал которого из отрицательного становится положительным благодаря притоку ионов натрия. Электрическое блокирование длится достаточное время, чтобы предотвращать прикрепление других сперматозоидов до тех пор, пока не успеет образоваться белковая оболочка, более эффективно препятствующая полиспермия.

Яйца Fucus после оплодотворения высвобождаются в морскую воду. Ось полярности яйца еще до появления ризоида испытывает влияние физических факторов: будущая ризоидная сторона клетки становится электроотрицательной. В этот конец проникают ионы натрия и кальция, а в область таллома -- ионы хлора, в результате чего через клетку проходит ток. Считают, что электрическое поле инициирует процесс дифференцировки.

Электрические токи и эмбриональное развитие

Возможно, роль электрических токов в эмбриональном развитии более велика, чем предполагалось. В слоях эпителия у куриных зародышей вследствие работы натриевого насоса создается положительный потенциал, вызывающий трансэпителиальные электрические токи. Эти последние могут создавать предпосылки для движения клеток зародыша или направлять эти движения. Чтобы получить количественные данные о таком процессе, изучали подвижность зародышевых клеток перепела в электрическом поле. У этих клеток обнаружилась неожиданно высокая чувствительность к слабым постоянным электрическим нолям. Наблюдались три эффекта: 1) клетки ориентировались длинными осями перпендикулярно силовым линиям поля при градиентах напряжения от 150 до 600 мВ/мм; 2) клетки перемещались к катоду, а при обращении тока двигались в обратную сторону; 3) через один час пребывания в поле с градиентом 400 мВ/мм клетки удлинялись и ориентировались перпендикулярно силовым линиям. Средняя скорость миграции клеток составляла.

Влияние электрических полей на поведение животных

При полете птицы и насекомые неизбежно испытывают на себе влияние электрических токов и сил, и в их теле индуцируются диполи. Аналогичным образом, испытывают влияние электрических токов и животные, находящиеся на земле. О влиянии электрических биополей на поведение животных свидетельствуют опыты самого разного рода.

Магнетизм: взвесь частиц в магнитных полях

Магнит ---это любой кусок железа или другого материала,, обладающий способностью притягивать железо или сталь; само же проявление такой способности называется магнетизмом. Силовые линии поля естественного магнита всегда сходятся к двум точкам. Все магниты -- диполи, т. е. имеют две области противоположной полярности, называемые южным и северным магнитными полюсами. Высказывается предположение о существовании раздельных монополей, однако они пока не обнаружены. Поскольку клеточное содержимое является водной фазой, представляют интерес также и свойства магнитных жидкостей. Эти последние во многих отношениях уникальны. Примером может служить взвесь частиц тонко измельченного магнетита в керосине. В ферромагнитной жидкости, помещенной в магнитное поле, возникают механические силы в результате действия поля на дипольные моменты твердых коллоидных частиц.

Под действием однородного горизонтального магнитного поля в магнитной жидкости образуются сложные извилистые структуры с тончайшим рисунком, напоминающим лабиринт. В таких жидкостях наблюдается также особый вид устойчивого равновесия взвеси.

Явление магнетизма в твердой и жидкой средах приобретает особую значимость при рассмотрении эволюции организмов ¦в связи с обнаружением частиц магнетита в клетках прокариот и высших эукариот.

Реакция бактерий на магнитное поле Земли

О влиянии магнитного поля Земли на живые организмы четко свидетельствуют многие эксперименты. Реакция перемещения бактерий в магнитном поле называется магнитотаксисом.

Бактерии из морских отложений быстро мигрируют в локальном геомагнитном поле. Если передвигать небольшие магниты вблизи бактерий, направление движения последних немедленно изменяется. Бактерии реагируют на слабые поля порядка 0,5 Гс. Путем изменения конфигурации магнитных полей было показано, что движение бактерий, осуществляемое с помощью жгутиков, направляется магнитным полем Земли.

Магнитотаксис проявляют и бактерии другой группы, присутствующие в пресноводных донных осадках. Их клетки содержат кристаллы железа размером 100X150 нм, в среднем по 22 кристалла в одной клетке; весовое содержание железа в их сухом веществе составляет 1,5%. По данным мёс-сбауэровской спектроскопии, внутриклеточное железо представляет собой магнетит.

Тело насекомых обладает остаточным магнетизмом.

Влияние магнитного поля на пчел проявляется в виде различных эффектов.

1. Если пчелиный рой лишен возможности ориентироваться, пчелы строят соты, соблюдая то же направление относительно внешнего геомагнитного поля, что и в родительском улье.

2. Если лишить пчел информации о ходе времени, они, по-видимому, устанавливают свои биологические часы по периодическим суточным изменениям магнитного поля Земли.

3. Этот ритм нарушается, если на пчел подействует магнитное поле несравнимо большей силы, чем поле Земли.

Наложение сильного магнитного поля примерно в 700 Гс показало, что в организме пчел имеется вещество, сохраняющее остаточную намагниченность, и сосредоточено оно только в тканях фронтальной части брюшка; именно здесь и был обнаружен магнетит. Считают, что пчелы приобретают магнитный «импринт» в процессе развития, так как вследствие неизменной ориентации ульев геомагнитное поле всегда направлено перпендикулярно телу пчел, развивающихся в ульях.

Магнитное поле служит для птиц источником информации.

Домашние голуби, выпущенные в незнакомом месте, при возвращении домой используют «картографическое чувство» и «чувство компаса». Твердо установлено, что в ясные дни они ориентируются по солнцу, но правильный путь голуби выбирают и в пасмурную погоду. Способность ориентироваться при сплошной облачности утрачивается ими, когда к их голове прикреплен небольшой магнит. Это показывает, что они используют для ориентации информацию о магнитном поле. Поиск в теле голубей при помощи магнитометра доменов с устойчиво высокой магнитной восприимчивостью показал, что у каждого подопытного голубя в тканях, расположенных с одной стороны черепа и близко примыкающих к нему, содержится магнитный материал. Кристаллы, извлеченные из этих тканей, состоят из магнетита.

Физические факторы, влияющие на дифференцировку, играют и эволюционную роль.

У растений не существует четкого разграничения между соматическими и половыми клетками. Следовательно, факторы, влияющие на дифференцировку, воздействуют также и на эволюцию. Это утверждение справедливо и для некоторых беспозвоночных животных, а отчасти и для позвоночных.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.