Рефераты. Физиологическое значение цитоплазмы, ферментов и фотосинтеза

Физиологическое значение цитоплазмы, ферментов и фотосинтеза

Кафедра селекции, семеноводства, хранения и переработки сельскохозяйственной продукции

КОНТРОЛЬНАЯ РАБОТА №1

по дисциплине Физиология растений

Выполнил:

студент III курса заочного отделения

агрономического факультета

Проверила:

Вопросы

1. Физико-химические свойства цитоплазмы. Гетерогенность цитоплазмы.

2. Ферменты, их химическая природа и функциональное значение. Факторы, влияющие на активность ферментов.

3. Активная роль корневой системы в поглощении воды и минеральных веществ.

4. Действие недостатка воды на растение.

5. Фотосинтез, его значение. Современные представления о сущности фотосинтеза.

6. Каротиноиды, их физиологическая роль.

7. Химизм аэробной фазы дыхания. Заслуга Г. Кребса.

1. Физико-химические свойства цитоплазмы. Гетерогенность цитоплазмы

Кинетика химических реакций в цитоплазме обусловливается сложным сочетанием факторов, среди которых структурные особенности протоплазмы имеют большое значение. Белки протоплазмы отличаются большими химическими возможностями вследствие отличия их строения, химической природы, гетерополярности и поэтому могут вступать в безграничное количество реакций с различными веществами, которые содержатся в протоплазме или поступают извне. В результате этих реакций может измениться форма макромолекулы, что приведет к изменению ее химической активности. Таким образом, изменчивость свойств белков -- важная особенность живого вещества.

Цитоплазма построена по коацерватному типу и представляет сложную коллоидную систему из белковых, углеводных и липидных соединений. В разработанной известным советским ученым А. И.Опариным теории о происхождении жизни на Земле большое значение придается выделению органических веществ, белоксодержащих комплексов в форме коацерватных капель из первичных водных растворов.

Белки относятся к гидрофильным коллоидам. Такими же свойствами обладают и другие соединения, входящие в состав протоплазмы. Коллоидная природа протоплазмы имеет существенное биологическое значение. Благодаря наличию большого количества мельчайших частиц в коллоидных системах развиваются огромные суммарные поверхности, которые играют чрезвычайно большую роль. На них может происходить связывание, адсорбция разнообразнейших активных веществ и прежде всего тех, которые снижают поверхностное натяжение. На мицеллах происходит связывание ферментов и других соединений, адсорбируются различные питательные вещества. Все это создает условия для различных химических реакций.

Кроме рассмотренных свойств белков, наблюдается еще явление денатурации. При этом гидрофильные коллоиды -- белки -- становятся гидрофобными, теряют стойкость и вследствие этого легко коагулируют. Такая типичная денатурация происходит при нагревании белков. Денатурированные белки, т. е. белки, которые утратили свои естественные свойства (выпали в осадок), имеют способность адсорбировать красители. Внешне белки могут казаться неизменными, но поглощению красителя можно определить начало явления денатурации.

Белковые вещества, как амфотерные соединения, вследствие реакций с электролитами изменяют свой заряд, что отражается на состоянии коллоидной системы, а также на ее растворимости. С электролитами связаны величина и знак заряда биоколлоидов протоплазмы, соотношение между процессами гидратации и дегидратации, коацервации и т. д.

Важную роль во всех этих процессах играет поверхность протоплазмы; она является ареной для осуществления процессов адсорбции и десорбции, что влияет на движение частиц, которое может иметь большую скорость, проходить одновременно в противоположных направлениях и влиять также на свойства самой протоплазмы -- вязкость, эластичность, проницаемость и др.

Особенности протоплазмы не дают возможность рассматривать ее как истинно золеобразную жидкость, поскольку она по упругости приближается к гелю. Явление взаимного превращения золя в гель наблюдается на протяжении всей жизнедеятельности клетки. На состояние протоплазмы влияют концентрация водородных ионов, а также соотношение между содержанием одно- и двухвалентных катионов. В присутствии кальция коагуляция белков в протоплазме происходит при более низкой температуре. Свойства протоплазмы обусловливаются сложностью многофазной, полидисперсной, коллоидной системы. Цитоплазма имеет три слоя: внешний -- плазмалемма, внутренний -- тонопласт и лежащий между ними -- мезоплазма. Пограничные слои плазмалеммы и тонопласт вязкие и эластичные, а мезоплазма более текучая и менее эластичная.

Межмицеллярные пространства в протоплазме, кроме воды, содержат еще и липоиды, которые находятся в непрочной связи с некоторыми боковыми цепочками белковых веществ. Эти боковые цепочки заканчиваются одной или двумя гидрофобными группами СН3, обладающими способностью присоединять к себе жиры. Кроме того, молекулы липоидных веществ имеют гидрофильные группы СООН, СОН, NH2, которые определяют способность липоидов взаимодействовать с водой. Следовательно, гидрофобные группы молекул будут ориентированы к плазмалемме, а гидрофильные -- к мезоплазме. Липиды способны снижать поверхностное натяжение жидкостей; согласно законам физической химии, они концентрируются главным образом на поверхности.

Во взрослых клетках, которые имеют вакуоли, на внутренней поверхности протоплазмы, граничащей с клеточным соком, также образуется обогащенный липидами внешний слой, аналогичный плазмалемме; одновременно происходит скопление содержащихся в клеточном соке липидов возле поверхности вакуоли, которая граничит с протоплазмой. Поэтому тонопласт богаче липидами, чем мезоплазма. Структура протоплазмы чрезвычайно подвижна, и имеющиеся в протоплазме вещества непрерывно вступают во взаимодействие как друг с другом, так и с органическими веществами или минеральными солями, которые поступают в клетку или вырабатываются протоплазмой.

Так, под влиянием сахара структура протоплазмы может измениться (из золя перейти в гель).

Таким образом, протоплазма является сложной гетерогенной коллоидной структурой, которая включает большое количество различных компонентов. Дисперсной средой является комплексный гидрозоль с высоким содержанием белковых и других макромолекул, Сахаров, неорганических солей, например фосфатов. Важную роль играет вода, которая насыщает всю систему коллоидов протоплазмы, образуя непрерывную фазу.

В живой протоплазме постоянно происходят процессы новообразования и распада различных веществ, коагуляция коллоидов и их обратное превращение в золи, образование коацерватов, гелей и т. д. Происходящие в протоплазме процессы непосредственно зависят от состояния и свойств структур, из которых она состоит. Изменения протоплазменных структур под воздействием внешних условий имеют приспособительный характер.

2. Ферменты, их химическая природа и функциональное значение. Факторы, влияющие на активность ферментов

Ферменты подразделяются на одно- и двухкомпонентные. Первые состоят только из молекул белка, вторые из белковой части, получившей название апофермента, и соединения небелковой природы, называемой простетической группой. В двухкомпонентных ферментах белок-носитель называют еще фероном, а небелковую активную группу -- агоном. У двухкомпонентных ферментов, небелковая часть которых легко отделяется от апофермента, проететические группы называют коферментами. Размеры кофермента во много раз меньше размеров белковой молекулы (апофермента).

Коферментами ферментов пиридиновых дегидрогеназ являются:

- никотинамидадениндинуклеотид (НАД);

- никотинамидадениндинуклеотидфосфат (НАДФ);

- флавиннуклеотиды -- коферменты флавиновых ферментов;

- производные фолиевой кислоты -- коферменты фермента глицинтрансформиминазы.

Специфическая деятельность ферментов является одним из важнейших факторов организации процессов обмена веществ в живом организме, их согласованности и направленности.

Многочисленные биологические катализаторы в организме -- ферменты, отличающиеся исключительной специфичностью и эффективностью действия, ускоряют только определенные превращения данного вещества.

Распределение скоростей ферментативных превращений, которые создаются в организме, в значительной мере определяет специфичность процессов обмена веществ.

Действия ферментов согласованны: продукты катализа одного фермента поступают к другому, а не рассеиваются в содержимом клетки; реакции, выделяющие энергию, тесно связаны с реакциями, требующими затрат энергии. Установлено, что окисление сахаров и жиров происходит с выделением энергии, тогда как синтез белков требует затрат ее.

Активность ферментов зависит от условий внешней среды, окружающей молекулу фермента. Каждый фермент работает в определенных границах температуры и рН. Для большинства ферментов температурный оптимум лежит в пределах 40--50°С. В клетке одновременно работает множество ферментных систем, и каждый фермент требует определенной реакции среды.

Наивысшая активность большинства растительных ферментов отмечается при слабокислой или нейтральной реакции, характерной для растительных клеток. Такое влияние рН объясняется непосредственным действием концентрации водородных ионов на свойства центра, определяющие образование фермент-субстратного комплекса. Кроме того, ионы водорода оказывают влияние на степень ионизации субстрата и молекулы ферментного белка.

Скорость ферментативной реакции в сильной степени зависит от концентрации субстрата в среде, но если достаточно субстрата, то и от содержания фермента.

Активность ферментов в сильной степени зависит от содержания в реакционной среде различных дополнительных ионов и соединений. Вещества или ионы, увеличивающие каталитическую активность ферментов, получили название активаторов.

Роль активаторов ферментов выполняют ионы различных металлов: К+, Са2+, Mg2+, Fe2+, Cа2+ и др. Активация может осуществляться одним или несколькими ионами. Например, амилаза, катализирующая расщепление крахмала и липаза, -- распад жиров, активируются ионами Са2+; алкогольдегидрогенеза, катализирующая окисление спиртов до альдегидов, -Zn2+; пероксидаза и каталаза -- Fe2+; аргиназа, участвующая в гидролитическом расщеплении аргинина, -- Со2+; Mn2+; Ni2+.

Для проявления максимальной активности фермента требуется определенная концентрация ионов-активаторов в среде.

Усиление активности ферментов под действием ионов объясняется прежде всего тем, что многие ферменты содержат их в своей молекуле и представляют собой так называемые металлоферменты.

К металлоферментам относятся каталаза и пероксидаза, содержащие железо, амилаза, в состав которой входит кальций; нитратредуктаза, содержащая молибден. В ряде случаев активность ферментов в присутствии ионов металлов поддерживается образованием координационных связей между активным центром фермента и субстратом.

Существуют вещества, подавляющие действие ферментов, которые получили название ингибиторов ферментов. Ингибиторы делят на два класса: общие и специфические. К общим ингибиторам относят соли тяжелых металлов -- свинца, серебра, ртути, вольфрама, которые денатурируют белок и, следовательно, подавляют действие ферментов.

Наибольшее значение имеют специфические ингибиторы, которые находят практическое применение. Они действуют только на одну ферментативную реакцию. Присоединяясь к активному центру фермента, ингибитор препятствует образованию комплекса фермент -- субстрат, вследствие чего часть молекул фермента переходит в неактивное состояние и скорость ферментативной реакции замедляется или прекращается.

3. Активная роль корневой системы в поглощении воды и минеральных веществ

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.