Рефераты. Фізіологія рослинної клітини

Фізіологія рослинної клітини

МІНІСТЕРСТВО АГРАРНОЇ ПОЛІТИКИ УКРАЇНИ

ДНІПРОПЕТРОВСЬКИЙ ДЕРЖВАНИЙ АГРАРНИЙ УНІВЕРСИТЕТ

РЕФЕРАТ

НА ТЕМУ :

«ФІЗІОЛОГІЯ РОСЛИННОЇ КЛІТИНИ»

Виконав студент групи А- 3 -08

Гусак С.О.

Перевірила Професор Бессонова В.П.

Дніпропетровськ 2009

Зміст

1. Історія вивчення клітини і клітинна теорія

2. Сучасні методи вивчення клітини

3. Еволюція клітини

4. Ультра структура (мікроскопічна будова)

5. Біологічні мембрани їх будови і функції

6. Цитоскелет, мікротрубочки і мікрофіломенти,будова і функції

7. Ядро, його будова і функції

8. Ендоплазматична сітка, будова і функції

9. Рибосоми, будова і функції.

10. Мітохондрії, будова і функції

11. Пластиди, будова і функції

12. Мікросоми

13. Вакуолярна система

14. Апарат Гольджі, будова і функції

15. Будова і функції клітинних стінок

Література

1. Історія вивчення клітини і клітинна теорія

Людське око дозволяє бачити предмети розміром не менше 0.1 мм., що багато разів більше діаметра більшості клітин. Тому відкриття клітини і розвиток клітинної теорії тісно пов'язані з розвитком оптики і створення мікроскопа.

Перший мікроскоп, що складався з двох чи більше лінз, було винайдено голландськими механіками братами Янсен у 1600 році. Згодом його вдосконалив англійський фізик Роберт Гук. Виступаючи в Лондоні на зборах Королівського товариства він продемонстрував можливості свого приладу, популярність мікроскопа зросла.

У 1672 році італійський біолог і лікар Марчелло Мальпігі у своїй книзі « Анатомія рослин» докладно описує мікроскопічні структури рослинних тканин. В цей же час нідерландський натураліст Антоні Ван Левенгук, використовуючи мікроскоп, спостерігав і змалював сперматозоїди, еритроцити, найпростіших та інше.

За десятки років, що пройшли після відкриття Р.Гука, величезне число дослідників використовувало мікроскопи, накопичилась велика кількість повідомлень, описів і малюнків різних типів клітин, тканин і мікроорганізмів. Однак усі вченні того часу головною частиною клітин вважали їх стінки, не приділяючи належної уваги внутрішньоклітинним структурам. Так продовжувалося аж до ХІХ століття.

Так, у 1835 р. чеський натураліст Ян Пуркіньє вперше описує ядро тваринної клітини, вводить термін «протоплазма» і стверджує, що саме вона, а не клітина стінка, є живою речовиною. В 1826 р. російський вчений Карл Бер відкриває яйцеклітину і вивчає ембріогенез, що затвердило його засновника ембріології як науки. В 1830 р. англійський ботанік Роберт Браун описує ядро рослинної клітини, вказуючи на те що ця структура є обов'язковим компонентом усіх клітин. У 1846р. німецький ботанік Гуго фон Моль дає класифікацію тканинам рослин, та розподіляє поняття «протоплазма» і «клітинний сік».

Після визначення клітинної теорії вона почала інтенсивно розвиватися й уточнюватися. Наприкінці ХІХ століття німецький медик і біолог Рудольф Вірхов довів, що клітини утворюються з інших клітин шляхом їх поділу. За короткий час (1883-1898рр.) відкрито пластиди рослинних клітин, більш глибоко вивчено клітинний поділ і описані хромосоми, виявлені мітохондрії й апарат Гольджі.

У 30-40 року ХХ сторіччя з винаходом електронного мікроскопа почалася нова ера в розвитку біології. Стало можливим вивчити ті деталі клітин, про які раніше людина не мала уявлення. З цього часу в цитології і фізіології рослин наступив різкий перелом - замість роздільного вивчення структури клітин і їхніх функцій вони стали розглядатися в органічній єдності, що дозволило розкрити найважливіші фізіологічні процеси, які в них протікають.

2. Сучасні методи вивчення клітини

Нині існує безліч методів вивчення рослинних клітин. Найбільш широко використовуваний - класичний мікроскопічний метод, що полягає у вивченні живих і фіксованих клітин і тканин на тимчасових і постійних препаратах за допомогою звичайних світових мікроскопів. Широко використовуваним методом в електронній мікроскопії є метод «заморожування-сколювання». При цьому заморожену тканину (-196 0С) розколюють лезом і площина відколу в багатьох випадках проходить через гідрофобну зону мембран, що дозволяє по-новому глянути на мікроструктуру клітин і установити положення окремих макромолекул.

Для вивчення хімічного складу і функцій окремих клітинних структур з успіхом застосовується методи фракціонування клітин чи їхнього вмісту. Екстракти зруйнованих клітин ділять на функції, піддаючи їх високошвидкісному центрифугуванню. Крупні компоненти осідають першими(ядра, хлоропласти, мітохондрії)/. При підвищенні швидкості центрифуги осаджуються дрібніші органели (мікротоми, рибосоми). Швидкість седиментації кожного компоненту залежить від його розмірів і форми, і звичайно виражається коефіцієнтом седиментації - S на честь шведського фізика Теодора Сведберга, який розробив даний метод.

Для вивчення функціональної активності різних компонентів клітини іноді використовують методи мікрохірургії. Великі можливості у вивченні фізіології клітини відкривається з розвитком методів генної інженерії і біотехнології. Технології рекомбінантних ДНК у прикладних галузях дозволяють створювати транс генні організми з новими властивостями й ознаками, необхідними людині.

3. Еволюція клітини

За основу еволюційної теорії органічного світу приймається біохімічна гіпотеза російського біохіміка О.І.Опаріна (1922), відповідно до якої із простих неорганічних сполук - карбідів, окислів гірських порід, аморфного вуглецю і водню - могли створюватися первинні органічні речовини - можливо, вуглеводні. Завдяки радіації газовим розрядам, високій температурі і хімічним реакціям утворюються сполуки, подібні до ліпідів, амінокислот,нуклеїнових кислот. Сполуки ці накопичувалися як у земній атмосфері так і в океані. У воді вони створювали згустки в результаті об'єднання молекул і побудови інших комплексів. Такі згустки називають коацерватними краплями чи коацерватами. На границі між коацерватами і зовнішнім середовищем скупчувались молекули ліпідів, що привело до утворення примітивної клітинної мембрани. В міру росту коацервати могли розпадатись на дрібніші краплі, що було прообразом розмноження - більшість дрібних коацервантів також були здатні до вибіркової адсорбції.

Пізніше був розроблений лабораторний метод синтезу РНК у результаті проведення подібних експериментів. Це стало переломним моментом, тому, що полінуклеотиди здатні вже до якісно нової хімічної реакції - матричного синтезу, тобто до само подвоєння. Однак переконливо пояснити виникнення механізму, за допомогою РНК направляла б синтез білків, появу ДНК і здатність систем до самовідтворення, ця теорія не змогла.

В ході біохімічної еволюції утворилась величезна кількість складних органічних речовин. Так деякі клітини стали автотрофами. Поява автотрофів прискорила конкуренція гетеротрофів за їжу. Синтез складених органічних речовин різко зменшився, що зменшило кількість гетеротрофів, але одночасно підвищило стійкість процвітаючих форм життя - автотрофів. У таких умовах деякі анаероби вимирають, інші заповнюють екологічні ніші, практично позбавлені кисню. Треті вступають у симбіоз з аеробними клітинами і пізніше утворюють з ними міцну асоціацію.

Усі сучасні одноклітинні і багатоклітинні організми поділяються на дві групи - прокаріоти і еукаріоти. До прокаріот відносяться тільки бактерії і синьозелені водорості (ціанобактерії). До еукаріот - зелені рослини, гриби, слизовики і тварини.

4. Ультра структура (мікроскопічна будова)

Клітина - основна структурно - функціональна одиниця живої матерії, елементарна біологічна система всіх організмів, за винятком вірусів. У клітині здійснюються всі життєві процеси : живлення, генерація енергія виділення, новоутворення її елементів, розподіл,, реакція та подразнення і т.д. (рис.1.2).

Поняття про клітину як складну відкриту біологічну систему постійно розвивається. Е.Ліберт (1976) вважає, що доцільно виділити три складові частини клітини : оболонку, протоплазму і вакуолю, а ряд структурних елементів протоплазми він створив ядро, мітохондрії і пластиди як носіїв генетичної інформації. Рибосоми, що містяться як у ядрі так і цитоплазмі. він виділяє окремо.

В.Г. Храновський (1982) пропонує поділяти клітину на протопласт і його продукти, а вакуолю розміщує між ними. Рибосоми знаходяться в комплексі цитоплазми.

С.І. Лебедєв (1988) розділяє клітину на дві основні частини - вміст (протопласт) і оболонку. Протопласт включає ядро і цитоплазму, у якій знаходяться органели. ВВ.Полєвой (1989), перелічивши складові частини клітини, не дотримується ніякої систематизації.

Узагальнюючи всі ці погляди, Є.М.Макрушина (1995) пропонує таку логічну схему структури рослинної клітини (рис.1.3).

5. Біологічні мембрани їх будови і функції

Структура і функції мембрани. Мембрани - пограничні цитоплазматичні структури, що забезпечують діалектичну єдність розмежування і зв'язку компонентів. До мембран відносяться ультротонкі структури, що оточують протопласт (пластична мембрана, плазма лема), вакуолі (тонопласт), ядро, пластиди, мітохондрії, апарат Гольджі, ендоплазматичний ретикулум, мікротоми й інші компоненти цитоплазми (рис. 1.4)..

1- Ядерна мембрана, 2- ядерна пора, 3- ендоплазматична сітка, 4- мікротома, 5-перехідний міхурник, 6- везикула, 7- диктиосома, 8- тонопласт, 9- плазмолема, 10- екзоцитоз.

Існує самостійна наука - мемброналогія, що займається вивченням мембранних систем різного походження. Проблема мембран має велике значення не тільки для теорії, але й для прикладної біології.

Найважливішими функціями мембран є :

- забезпечення діалектної єдності розмежування і зв'язки клітинних компонентів.

- підтримка гомеостату - сталості складу середовища в кожному компртменті клітини.

- здійснення обміну речовин, енергії й інформації між клітиною і навколишнім середовищем.

- з мембранами зв'язана найважливіші біохімічні процеси клітини, оскільки в них локалізовані ферменти, що каталізують синтез, гідроліз,окислювання.

- на мембранах хлоропластів і мітохондрій здійснюються складні процеси біоенергетики, що забезпечують клітину енергією.

- мембрани виконують також рецепторно-регуляторну функцію : сприймаючі зовнішні і внутрішні подразнення і передаючи сигнали про них, забезпечують адаптивні відповіді клітин.

Основні компоненти мембран - ліпіди і білки. Мембрани мітохондрії відрізняються високим вмістом білків.

Мембрані білки поділяються на три групи :

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.