Рефераты. Исторические этапы научной рациональности

а рубеже XVIII-XIXвв., в геологии сформировалась концепция катастрофизма, раскрывающая процессы образования земной коры и рельефа на ее поверхности. Идея катастрофизма возникает в ходе рефлексивного анализа когнитивного аспекта рациональности в физике и механике. Потребность в рефлексивном анализе "чужой" деятельности в единстве ее составляющих возникает в силу не развитости собственной. Движимые идей поиска объективной истины, научное сообщество восходящей науки стремится к ассимиляции позитивного опыта других наук.

Выявляя предпосылки, которые предшествовали возникновению катастрофической концепции и анализируя процесс ее формирования, можно заметить некоторые специфические особенности когнитивно- методологического характера. В геологию транслируются образцы описания, сложившиеся в физике из механистической картины мира.

Механика к тому времени считалась самой разработанной областью естествознания. Принятые ею способы познания считались образцовыми. Заимствованные из физики методологические принципы предписывали описывать все геологические явления, исходя из метафизического (механистического) представления о развитии природных тел. Можно выделить следующие установки на описание геологических реальностей:

· установка на описание геологических процессов, в которых движущей силой их формирования и гибели усматриваются катаклизмы;

· описать развитие земли и органический мир предполагалось с учетом принципа перерывов, т.е. допущения резких и быстрых переворотов, приведших к коренным изменениям неорганического и органического мира;

· понимание описания как установление корреляций между ископаемыми и населяющими животными и растениями, между последовательностью геологических слоев;

· установка на неизменяемость органических видов в эволюционном процессе.

В общих чертах данная система установок на описание геологической действительности рассматривалась как система норм описания, реализованных в катастрофической концепции, и явилась выражением рационализации метода описания, разделяемого сообществом геологов. Содержание этого метода в определенной степени совпадало с принципами метафизического (механистического) материализма, игравшими роль философского основания в периоде формирования и развития механистической картины мира. Например, такая методологическая ограниченность метафизического материализма, как одностронний подход к сложным явлениям действительности, тенденция к абсолютизации отдельных природных сил и процессов была присуща и для катастрофической концепции развития земли.

Из этого можно сделать косвенный вывод о том, что и философские принципы транслировались имплицитно в геологию. Функция философских принципов здесь проявляется в оправдание геологического подхода к предмету своего исследования - не дает повода сомневаться в истинности избранного для научного поиска метода.

Трансляцию норм и правил описания из механики в геологию нельзя рассматривать как приспособление механистической картины мира в геологическом познании. В силу специфичности объекта геологического исследования, движение, развитие земли в концепции катастрофизма не редуцировалось полностью к механическому движению объектов физики, но в какой-то мере редуцировались к философским основаниям механистической картины мира: взгляды на развитие природных явлений и их односторонняя абсолютизация, лапласовский принцип жесткой детерминации в его геологической модификации коррелировали с принципом неизменяемости органических видов и идеей о появлении новых форм жизни после грандиозных переворотов на поверхности земли.

Принцип лапласовского детерминизма, согласно которому настоящее состояние Вселенной необходимо рассматривать как следствие ее предыдущего состояния и как причину будущего, легший в основу механистической картины мира, в его конкретизированной форме применительно к геологии означал, что поверхность Земли должна была испытать громадные изменения, как следствие происходящих процессов как внутри земли, так и в окружающей ее пространстве. Даже небо, несмотря на порядок в своих движениях, не является неизменным.

В историческом плане концептуальная модель катастрофизма перерастает в исследовательскую программу. Принятые в рамках этой программы нормы, правила, и способы научного поиска рассматриваются учеными как воплощение ценностно-мировоззренческих и когнитивных установок в познании своей эпохи. Нормы и правила описания находили свое воплощение в методах исследования, в таких, как биостратиграфический, сравнительноанатомический, актуалистический, которые находили успешное применение в геологии и опрокидывали натурфилософские абстракции. Рассмотренные пути формирования этих методов предстают как процесс рационализации познавательной деятельности исследователя в геологии. Сложившиеся принципы и методы ведения научного поиска позволяли описать геологическую действительность и формировать строго установленные и индуктивно обработанные факты, на основе которых выводили эмпирические закономерности.

Дальнейшие шаги рационализации научной деятельности приводит к ее усовершенствованию, путем уточнения, конкретизации существующих средств познания и одновременно вводом новых, эффективных, наиболее адекватно отражаемых особенности изучаемого объекта.

2 Неклассический этап

Неклассическое естествознание (конец XIX - середина XX в.в.) способствовало значительному расширению поля исследуемых объектов, открывая пути к освоению больших, сложных саморегулирующихся систем. Неклассический тип рациональности учитывает связи между знаниями об объекте и характером средств и операций деятельности, рассматривая объект как вплетенный в человеческую деятельность.

В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль стали претендовать законы электромагнитных явлений. Однако в результате новых экспериментальных открытий в области строения вещества в конце XIX -- начале XX в. обнаруживалось множество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил в дальнейшем целый «каскад» научных открытий.

Так с 1895 по 1897 гг. были открыты лучи Рентгена, радиоактивность, радий, первая элементарная частица -- электрон. В 1900 г. немецкий физик Макс Планк ввел квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излучения, названный его именем. Квантовая теория Планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц.

В 1911 г. английский физик Эрнест Резерфорд предложил планетарную модель атома. Затем в 1913 г. Нильс Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома.

Весьма ощутимый «подрыв» классического естествознания был осуществлен затем Альбертом Эйнштейном, создавшим сначала, в 1905 г. специальную, а позднее, в 1916 г. и общую теорию относительности. В 1924 г. было сделано ещё одно крупное научное открытие: французский физик Луи де Бройль высказал гипотезу о том, что частице материи присущи и свойства волны (непрерывность) и дискретность (квантовость). Вскоре, уже в 25--30 гг. ХХ в. эта гипотеза была подтверждена экспериментально в работах Шредингера, Гейзенберга, Борна и других физиков. Таким образом, был открыт важнейший закон природы, согласно которому все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами.

В этот период происходит сближение объекта и субъекта познания. Становится очевидной зависимость знания от применяемых субъектом методов и средств получения этого знания. Идеей научного познания действительности в XVIII--XIX вв. было полное устранение познающего субъекта из научной картины мира. Естествознание XX века показало неотрывность исследователя от объекта и зависимость знания от методов и средств. Иначе говоря, картина объективного мира определяется не только свойствами самого мира, но и характеристиками субъекта познания. Развитие науки показало, что полностью исключить субъективное из познания невозможно, даже там где субъект играет крайне незначительную роль. Недооценка творческой активности субъекта в познании, стремление «изгнать» из процесса познания эту активность закрывают дорогу к истине. Например, поведение атомных объектов «самих по себе» невозможно отделить от их взаимодействия с измерительными приборами, со средствами наблюдения, которые определяют условия возникновения явлений.

Важной особенностью научного знания стало стремление избежать односторонности, выявлять новые пути понимания целостной структуры мира. Развитие атомной физики показало, в частности, что объекты, называвшиеся раньше элементарными частицами, должны рассматриваться как сложные многоэлементные системы.

Получил развитие субстанциальный подход -- стремление свести всё изменчивое многообразие явлений к единому основанию, найти их «первосубстанцию». Стремление построить единую теорию всех известных взаимодействий: электромагнитного, слабого, сильного и гравитационного показывает, что главной тенденцией теоретической физики стало стремление к такому единству.

История познания показала, что детерминизм нельзя сводить к какой-либо одной из его форм или виду. Классическая физика, как известно, основывалась на механистическом понимании причинности. Причина понималась как чисто внешняя сила, воздействующая на пассивный объект. Таким образом смысл тезиса о причинности постепенно сузился, пока наконец не отождествился с презумпцией однозначной детерминированности событий в природе, а это в свою очередь означало, что знание природы или определенной ее области достаточно для предсказания будущего.

Становление квантовой механики выявило неприменимость здесь причинности в ее механистической форме. Это было связано с признанием фундаментальной значимости нового класса теорий -- статистических, основанных на вероятностых представлениях. Тот факт, что статистические теории включают в себя неоднозначность и неопределенность, некоторыми философами и учеными был истолкован как крах детерминизма вообще или «исчезновение причинности». На самом же деле формой выражения причинности в области микрообъектов является вероятность, поскольку здесь возможно определить лишь движение большой совокупности частиц, а о движении отдельной частицы можно говорить лишь в плане большей или меньшей вероятности.

Попытки создать учёными непротиворечивую теорию привели к парадоксальному выводу - необходимости внедрения этой «противоречивости» в естествознание в качестве существенной характеристики его объектов и принципа их познания.

В противовес идеалу единственно истинной теории, «фотографирующей» исследуемые объекты, здесь допускается истинность нескольких отличающихся друг от друга конкретных теоретических описаний одной и той же реальности, поскольку в каждом из них может содержаться часть объективно-истинного знания.

Исследование физических явлений показало, например, что частица и волна -- две дополняющие друг друга стороны единой сущности. Природа микрочастицы внутренне противоречива и соответствующее понятие должно выражать это объективное противоречие. Иначе оно не будет адекватно отражать свой объект, а стало быть, будет выражать лишь часть истины, а не всю ее в целом.

Попытки осознать причину появления этих противоречивых образов привели Нильса Бора к формулированию принципа дополнительности. Согласно этому принципу, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих набора классических понятий (например, частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как целостных образованиях.

Классической физике были присущи предсказания имеющие точно определенный, однозначный характер. «Если мы знаем координаты и скорость материальной точки в известный момент времени и действующие на нее силы, то мы можем предсказать ее будущую траекторию».

Законы же квантовой физики -- это законы статистического характера и предсказания на их основе носят не достоверный, а лишь вероятностный характер. Законы статистического характера являются основной характеристикой квантовой физики. Поэтому метод, применяемый, например, для рассмотрения движения планет, здесь практически бесполезен и должен уступить место статистическому методу и законам, которые управляют изменениями вероятности во времени.

Эпоха неклассической науки кардинально изменила способ мышления. Эту особенность неклассического естествознания подчеркивали выдающиеся его представители: Гейзенберг неоднократно говорил об ограниченности механистического типа мышления. Он отмечал также, что мыслить диалектически «нас вынуждает сам предмет», что «сами явления, сама природа, а не какие-либо человеческие авторитеты заставляют нас изменить структуру мышления; новая структура мышления позволяет нам добиться в науке большего, чем старая, являясь в данном случае более плодотворной».

3 Постнеклассический этап

В современную эпоху происходят новые радикальные изменения в основаниях науки. Эти изменения можно охарактеризовать как четвертую глобальную научную революцию, в ходе которой рождается новая постнеклассическая наука.

Интенсивное применение научных знаний практически во всех сферах социальной жизни, изменение самого характера научной деятельности, связанное с революцией в средствах хранения и получения знаний (компьютеризация науки, появление сложных и дорогостоящих приборных комплексов, которые обслуживают исследовательские коллективы и функционируют аналогично средствам промышленного производства и т.д.) меняет характер научной деятельности. Наряду с дисциплинарными исследованиями на передний план все более выдвигаются междисциплинарные и проблемноориентированные формы исследовательской деятельности. Если классическая наука была ориентирована на постижение все более сужающегося, изолированного фрагмента действительности, выступавшего в качестве предмета той или иной научной дисциплины, то специфику современной науки конца XX - начала XXI века определяют комплексные исследовательские программы, в которых принимают участие специалисты различных областей знания.

Реализация комплексных программ порождает особую ситуацию сращивания в единой системе деятельности теоретических и экспериментальных исследований, прикладных и фундаментальных знаний, интенсификации прямых и обратных связей между ними. В результате усиливаются процессы взаимодействия принципов и представлений картин реальности, формирующихся в различных науках. В этом процессе постепенно стираются жесткие разграничительные линии между картинами реальности, определяющими видение предмета той или иной науки. Они становятся взаимозависимыми и предстают в качестве фрагментов целостной общенаучной картины мира. На ее развитие оказывают влияние не только достижения фундаментальных наук, но и результаты междисциплинарных прикладных исследований.

Например, идеи синергетики, вызывающие переворот в системе наших представлений о природе, возникали и разрабатывались в ходе многочисленных прикладных исследований, выявивших эффекты фазовых переходов и образования диссипативных структур (структуры в жидкостях, химические волны, лазерные пучки, неустойчивости плазмы, явления выхлопа и флаттера). В междисциплинарных исследованиях наука, как правило, сталкивается с такими сложными системными объектами, которые в отдельных дисциплинах зачастую изучаются лишь фрагментарно, поэтому эффекты их системности могут быть вообще не обнаружены при узко дисциплинарном подходе, а выявляются только при синтезе фундаментальных и прикладных задач в проблемно-ориентированном поиске.

Объектами современных междисциплинарных исследований все чаще становятся уникальные системы, характеризующиеся открытостью и саморазвитием. Такого типа объекты постепенно начинают определять и характер предметных областей основных фундаментальных наук, формируя облик современной, постнеклассической науки. Взаимодействие с ними человека протекает таким образом, что само человеческое действие не является чем-то внешним, а как бы включается в систему, видоизменяя каждый раз поле ее возможных состояний. Включаясь во взаимодействие, человек уже имеет дело не с жесткими предметами и свойствами, а со своеобразными "созвездиями возможностей". Перед ним в процессе деятельности каждый раз возникает проблема выбора некоторой линии развития из множества возможных путей эволюции системы. Причем, сам этот выбор необратим и чаще всего не может быть однозначно просчитан.

Среди исторически развивающихся систем современной науки особое место занимают природные комплексы, в которые включен в качестве компонента сам человек. Примерами таких "человекоразмерных" комплексов могут служить медико-биологические объекты, объекты экологии, включая биосферу в целом (глобальная экология), объекты биотехнологии (в первую очередь генетической инженерии), системы "человек-машина" (включая сложные информационные комплексы и системы искусственного интеллекта) и т.д. При изучении "человекоразмерных" объектов поиск истины оказывается связанным с определением стратегии и возможных направлений преобразования такого объекта, что непосредственно затрагивает гуманистические ценности.

Заключение

Рационализация исследовательской деятельности не происходит однобоко, под влиянием только научных представлений и идей: этот процесс достаточно сложный, включающий в себя и подсознательные, волевые элементы сознания исследователя, и характер взаимодействия общества с природой, и мировоззренческие установки эпохи, и собственно-научные компоненты. Рациональность не носит законченный характер, она находится в постоянном развитии в историческом измерении.

Исторические этапы ее развития - это и периоды совершенствования познавательных средств и методов, и этапы становления разнообразных форм объективной истины, и формирование несоизмеримых типов научной рациональности.

Возникновение нового типа рациональности и нового образа науки не следует понимать как полное исчезновение представлений и методологических установок предшествующего этапа. Напротив, между ними существует преемственность.

В эпоху научных революций, когда осуществляется перестройка оснований науки, культура как бы отбирает из нескольких потенциально возможных линий будущей истории науки те, которые наилучшим образом соответствуют фундаментальным ценностям и мировоззренческим структурам, доминирующим в данной культуре. Это соответствие, на мой взгляд, есть одно из проявлений широкого понятия научной рациональности.

Чрезвычайно важно подчеркнуть особую значимость постнеклассического этапа научной рациональности в развитии современного общества. Т.к. выход из сегодняшней экологической и социокультурной ситуации, очевидно, состоит не в отказе от научно-технического развития, а в придании ему гуманистического измерения, что, в свою очередь, ставит проблему нового типа научной рациональности, включающей в себя в явном виде гуманистические ориентиры и ценности.

Список использованных источников

1. Карпенков С.Х. Концепции современного естествознания: Учебник для ВУЗов. - М. Академический Проект, 2006. - 654с.

2. Кохановский В. П.и др. Основы философии и науки: Учебное пособие для аспирантов. -- Ростов на Дону: Феникс, 2005. -- 608 с.

3. Кун Т. Структура научных революций.- М.,: АСТ, 2002. - 605 с.

4. Степин В.С., Кузнецова Л.Ф. Научная картина мира в культуре техногенной цивилизации.- М.: Институт философии РАН, 1994.- 274 с.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.