Рефераты. История, панорама современного естествознания и тенденции его развития

p align="left">Возрождение делает следующий шаг - человек чувствует себя божественным. Поэтому в эту эпоху столь символическое значение получает фигура художника - в ней наиболее адекватно выражается самая глубокая ренессансная идея - идея человека-творца, человека, вставшего на место Бога.

В эпоху Возрождения изменилась ситуация в сфере познания живого. Здесь особое место принадлежит XVI в. В истории биологии этот период выделяется как начало глубокого перелома в способах познания живого. Ренессансный гуманизм, пересмотрев представление о месте человека в природе, возвысил роль человека в мире.

Значительные изменения происходят в способе биологического познания - вырабатываются стандарты, критерии и нормы исследования органического мира. На смену стихийности, спекулятивным домыслам, фантазиям и суевериям постепенно приходит установка на объективное, доказательное, эмпирически обоснованное знание. Благодаря коллективным усилиям ученых многих европейских стран такая установка обеспечила постепенное накопление колоссального фактического материала. Значительную роль в этом процессе сыграли Великие географические открытия, эпоха которых раздвинула мировоззренческий горизонт европейцев - они узнали множество новых биологических, геологических, географических и других явлений. Фауна и флора вновь открытых стран и континентов не только значительно расширили эмпирический базис биологии, но и поставили вопрос о его систематизации.

Важной вехой в развитии анатомии стало творчество А. Везалия, исправившего ряд крупных ошибок, укоренившихся в биологии и медицине со времен античности. М. Сервет, павший жертвой протестантского религиозного фанатизма, и У. Гарвей исследовали проблему кровообращения. У. Альдрованди обратился к традиции античной эмбриологии, а его ученик В. Койтер, систематически изучая развитие куриного зародыша, заложил основы методологии экспериментального эмбриологического исследования. Г. Фаллопий и Б. Евстахий проводят сравнение структуры человеческого зародыша и взрослого человека, соединяя тем самым анатомию с эмбриологией.

Величайшим мыслителем, которому суждено было начать великую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николай Коперник. Еще в конце XV в., после знакомства и глубокого изучения "Альмагеста", восхищение математическим гением Птолемеем, сменилось у Коперника сначала сомнениями в истинности этой теории, а затем и убеждением в существовании глубоких противоречий в геоцентризме. Он начал поиск других фундаментальных астрономических идей, изучал сохранившиеся сочинения или изложения учений древнегреческих математиков и философов, в том числе и первого гелиоцентриста Аристарха Самосского, и мыслителей, утверждавших подвижность Земли.

Коперник первым взглянул на весь тысячелетний опыт развития астрономии глазами человека эпохи Возрождения: смелого, уверенного, творческого, новатора. Предшественники Коперника не имели смелости отказаться от самого геоцентрического принципа и пытались либо совершенствовать мелкие детали птолемеевской системы, либо обращаться к еще более древней схеме гомоцентрических сфер. Коперник сумел разорвать с этой тысячелетней консервативной астрономической традицией, преодолеть преклонение перед древними авторитетами.

Между 1505-1507 гг. Коперник в "Малом комментарии" изложил принципиальные основы гелиоцентрической астрономии. Теоретическая обработка астрономических данных была завершена к 1530 г. Но только в 1543 г. увидело свет одно из величайших творений в Истории человеческой мысли -- "О вращениях небесных сфер", где изложена математическая теория сложных видимых движений Солнца, Луны, пяти планет и сферы звезд с соответствующими математическими таблицами и приложением каталога звезд.

В центре мира Коперник поместил Солнце, вокруг которого движутся планеты, и среди них впервые зачисленная в ранг "подвижных звезд" Земля со своим спутником Луной. На огромном расстоянии от планетной системы находится сфера звезд (рис. 2).

Его вывод о чудовищной удаленности этой сферы диктовался гелиоцентрическим принципом. Только так мог Коперник согласовать его с видимым отсутствием у звезд смещений за счет движения самого наблюдателя вместе с Землей (т.е. отсутствием у них параллаксов).

В отличие от своих предшественников, Коперник пытался создать логически простую и стройную планетную теорию. В отсутствие простоты, стройности, системности Коперник увидел коренную несостоятельность теории Птолемея, в которой не было единого стержневого принципа, объясняющего системные закономерности в движениях планет.

объяснение смена движется вокруг неизменным в оси своего

Рис. 2. Гелиоцентрическая система Коперника

Коперник был уверен, что представление движений небесных тел как единой системы позволит определить реальные физические характеристики небесных тел, т.е. то, о чем в геоцентрической модели вовсе не было и речи. Поэтому свою теорию он рассматривал как теорию реального устройства Вселенной. Впервые получила времен года: Земля Солнца, сохраняя пространстве положение суточного вращения.

Теория Коперника логически стройная, четкая и простая. Она способна рационально объяснить то, что раньше либо не объяснялось вовсе, либо объяснялось искусственно, связать в единое то, что ранее считалось совершенно различными явлениями. Это - ее несомненные достоинства. Они свидетельствовали об истинности гелиоцентризма. Наиболее проницательные мыслители поняли это сразу.

Следующий шаг в мировоззренческих выводах был сделан монахом одного из неаполитанских монастырей Джордано Бруно. Познакомившись в 60-е гг. XVI в. с гелиоцентрической теорией Коперника, Бруно поначалу отнесся к ней с недоверием. Чтобы выработать свое собственное отношение к проблеме устройства Космоса, он обратился к изучению системы Птолемея и материалистических учений древнегреческих мыслителей, в первую очередь атомистов, о бесконечности Вселенной. Большую роль в формировании взглядов Бруно сыграло его знакомство с идеями Николая Кузанского, который утверждал, что ни одно тело не может быть центром Вселенной в силу ее бесконечности. Объединив гелиоцентризм Н. Коперника с идеями Н. Кузанского об изотропности, однородности и безграничности Вселенной, Бруно пришел к концепции множественности планетных систем в бесконечной Вселенной.

Бруно отвергал замкнутую сферу звезд, центральное положение Солнца во Вселенной и провозглашал тождество Солнца и звезд, множественность "солнечных систем" в бесконечной Вселенной, множественную населенность Вселенной. Указывая на колоссальные различия расстояний до разных звезд, он сделал вывод, что поэтому соотношение их видимого блеска может быть обманчивым. Он разделял небесные тела на самосветящиеся - звезды, солнца, и на темные, которые лишь отражают солнечный свет. Бруно утверждал, во-первых, изменяемость всех небесных тел, полагая, что существует непрерывный обмен между ними и космическим веществом, во-вторых, общность элементов, составляющих Землю и все другие небесные тела, и считал, что в основе всех вещей лежит неизменная, неисчезающая первичная материальная субстанция.

Именно Бруно принадлежит первый и достаточно четкий эскиз современной картины вечной, никем не сотворенной, вещественной, единой, бесконечной, развивающейся Вселенной с бесконечным числом очагов Разума в ней.

Новый взгляд на мир и человека в эпоху Возрождения позволил сделать выдающиеся открытия и создать новые теории, ставшие прологом научной революции XVI-XVII вв., в ходе которых оформилось классическое естествознание.

Глава 6. Научная революция XVI-XVII вв. и становление классической науки

Отправной точкой научной революции, в результате которой появилась классическая наука и современное естествознание, стал выход книги Николая Коперника "О вращении небесных сфер" в 1543 г. Но гелиоцентрические идеи, высказанные там, были всего лишь гипотезой, нуждавшейся в доказательстве. Поиск аргументов в пользу этой гипотезы и стал основной задачей научной революции XVI-XVII вв., которая начинается с работ И. Кеплера.

И. Кеплер -- великий астроном и математик

После работ Коперника дальнейшее развитие астрономии требовало значительного расширения и уточнения эмпирического материала, наблюдательных данных о небесных телах. Европейские астрономы продолжали пользоваться старыми античными результатами наблюдений. Но они устарели и часто были неточны. Проводимые же в ту пору европейскими астрономами наблюдения характеризовались большими погрешностями.

Кардинальные изменения наметились только в последней четверти XVI в. в трудах величайшего астронома мира Иоганна Кеплера (1531-1630).

Этот великий немецкий ученый (с удивительной судьбой, жизнь которого была полна невзгод и лишений) совершил величайший научный подвиг -- заложил фундамент новой теоретической астрономии и учения о гравитации. Он показал, что законы надо искать в природе, а не выдумывать их как искусственные схемы и подгонять под них явления природы.

Его первая книга, изданная в 1597 г., вышла под интересным названием "Космографическая тайна". В этой работе, находясь под влиянием пифагорейцев о всемогущей силе чисел, Кеплер поставил задачу найти числовые отношения между орбитами планет. Пробуя различные комбинации чисел, он пришел к геометрической схеме, по которой можно было отыскивать расстояния планет от Солнца.

В 1609 г. в Праге вышла в свет книга Кеплера "Новая астрономия, или Небесная физика с комментариями на движение планеты Марс по наблюдениям Тихо Браге".

В этой книге и были сформулированы первые два закона о движении планет.

1. Все планеты движутся по эллипсам, в одном из фокусов которых
находится Солнце.

2. Радиус-вектор, проведенный от Солнца к планете, за равные
промежутки времени описывает равные площади.

В 1619 г. выходит произведение Кеплера "Гармония мира", содержащее третий закон небесной механики: квадраты периодов обращения планет относятся как пути больших полуосей их орбит.

Кроме уже названных выше работ, Кеплер является автором оптических трактатов "Дополнения к Вителло", "Диоптрика". В работах по оптике он дает теорию камеры-обскуры, излагает теорию зрения, исправляя ошибки Алхазена, правильно объясняет близорукость и дальнозоркость, описывает конструкцию телескопа (трубы Кеплера), рассматривает ход лучей в линзах, приходит к выводу о существовании полного внутреннего отражения, находит фокусные расстояния плосковыпуклой и двояковыпуклой линз.

Из математических работ Кеплера наиболее известны "Рудольфовы таблицы" - это астрономические планетные таблицы, над которыми Кеплер работал более 20 лет. Названы они были так в честь императора Рудольфа II. Эти таблицы в течение почти двух веков служили морякам и астрономам, составителям календарей и астрологам и только в XIX в. были заменены более точными. Своими работами по математике Кеплер внес большой вклад в теорию конических сечений, в разработку теории логарифмов, способствовал разработке интегрального исчисления и изобретению первой вычислительной машины.

Для установления истинного сложного характера причин орбитального движения планеты требовалось уточнение основных физических понятий и создание основ механики.

В формировании классической механики и утверждении нового ми-ровоззрения велика заслуга Г. Галилея.

Г. Галилей -- один из основоположников опытного естествознания и новой науки

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.