В 1977 году была определена трёхмерная структура трансаминазы. Позже за рубежом были начаты рентгеноструктурные исследования других изоферментных форм аспартат-трансаминазы/29/. Определение трёхмерной структуры позволяет выявить связи между особенностями структуры и функции изоферментов. Рассмотрим результаты изучения трёхмерной структуры цитозольной куриной аспартат-трансаминазы.
Молекула состоит из двух идентичных субъединиц. Максимальные размеры молекулы составляют 110?70?60А. Белок характеризуется высоким содержанием вторичной структуры; на долю б-спиралей, в-слоя и реверсивных поворотов приходится соответственно 47,13 и 9% аминокислотных остатков. Субъединицу аспартат-трансаминазы можно условно разделить на 3 части: большой домен, малый домен и переходные участки между ними. Большой домен образован остатками с 75 по 300; его основу составляет сильно изогнутый слой (в-слой), состоящий из 7 в-цепочек, окружённых б- спиралями. Большой домен является наиболее стабильной частью субъединицы, к нему присоединён пиридоксальфосфат. Малый домен состоит из тесно сближенных NH2 -и СООН - концевых участков полипептидной цепи, а именно из остатков с 15 по 50 и с 360 по 412. Из малого домена выходит NH2 - концевой фрагмент цепи, который пересекает вход в активный центр и затем вплотную прилегает к поверхности большого домена смежной субъединицы. Большой и малый домены связаны двумя переходными участками: с NH2 - конца - участком цепи, состоящим из остатков 300-360. Оба переходных участка образованы преимущественно - спиралями, лежащими на поверхности молекулы/29/.
Оба активных центра аспартат-трансаминазы расположены в глубоких впадинах на противоположных сторонах молекулы на границе между субъединицами. Стенки каждого из активных центров образованы большим и малым доменом одной субъединицы и краем большого домена другой смежной субъединицы. В состав активного центра входят аминокислотные остатки, принадлежащие обеим субъединицам; этим объясняется отсутствие каталитической активности у мономера, кофермент связан в глубине щели активного центра на расстоянии ~8-10 А° от поверхности молекулы. Сторона А пиридированого кольца обращена к в - слою и метильной группе остатка Тrp-140 (стороны пиридинового кольца обозначены в соответствии номенклатурой JUPAC). Угол между плоскостями пиридинового и индольного колец составляет ?40-45°, между кольцами возможно стэкинг-взаимодействие. Остаток пиридоксальфосфата связан альдиминной связью с е-NH2-группой лизина-258. Коферментами трансаминаз являются производные пиридоксина-пиридоксальфосфат и пиридоксаминфосфат. Оба кофермента обратимо переходят друг в друга в ходе реакции переаминирования. Трансаминазы для катализа требуют оба кофермента, в отличие от других ферментов/13/.
1.2.3 Механизм реакции переаминирования
Общая теория пиридоксалевого капитализма была разработана в 1952 году А.Е. Браунштейном и М.М. Шемякиным, а несколько позднее - Д.Е.Мецлером и Э.Снеллом. Согласно этой теории действие пиридоксалевых ферментов обусловлено способностью альдегидной группы пиридоксальфосфата образовывать с аминокислотами альдимины (основания Шиффа) (рисунок1)/27/. В образующемся альдимине имеется система сопряженных двойных связей, по которой происходит смещение электронов от б - углеродного атома аминокислоты к электрофильному атому азота пиридинового кольца кофермента. Понижение электронной плотности у б- углеродного атома приводит к поляризации и ослаблению связей у этого атома.
Рисунок 1 - Смещение электронов к атому N кофермента.
Проведенные А.Е. Браунштейном и Э.Снеллом модельные эксперименты показали, что избирательный разрыв только одной из этих связей с образованием карбаниона, определяется особенностями строения активного центра фермента. Эти представления получили подтверждения при исследовании очищенных фосфопиридоксалевых ферментов. В 1966 году Донатан выдвинул и теоретически обосновал важное положение о том, что в альдимине, фиксированном в активном центре фермента, должна разрываться та из связей у б - углеродного атома, которая ориентирована перпендикулярно к плоскости пиридинового кольца пиридоксальфосфата. При такой ориентации энергия, необходимая для разрыва связи, минимальная вследствие перекрывания электронной орбитали связи с сопряженной р - системой кофермента ( у - р - перекрывание). Донатан предположил, что конформация может контролироваться апоферментом, возможно с помощью связывания карбоксилат - иона, а также, что имин может принимать одну из трех возможных конформаций/29/.
Здесь прямоугольником обозначена плоскость пиридинового кольца, вертикальной линией изображена у - связь. Конформамация (1) благоприятствует переаминированию.
Методами спектрального анализа было установлено, что альдегидная группа связанного в активном центре пиридоксальфосфата образует так называемое “внутреннее” основание Шиффа с е- NH2 - группой остатка лизина в белке. Из этого следует, что на начальном этапе каталитической реакции б - аминогруппа субстрата вытесняет е- NH2 - группу лизина из связи с коферментом (стадия трансальдиминирования). На основании изучения спектральных, химических и кинетических свойств аспартат - трансаминазы был сделан вывод о том, что как прямая, так и обратная реакция переаминирования состоят из восьми стадий; интермедиаты, возникающие на этих стадиях, представлены на рисунке 2/27,28/.
На первом стадии происходит присоединение к ферменту субстратной аминокислоты с образованием нековалентного комплекса Михаэлиса. Далее один из протоков аминогруппы субстрата переходит на атом азота внутренней иминной связи (стадия 2); в результате аминогруппа приобретает нуклеофильные свойства, необходимые для атаки на атом С-4' кофермента. Эта атака приводит к образованию промежуточного тетраэдрического соединения (геминального диамина, стадия 3); за этим следует освобождение е- NH2 - группы остатка лизина из связи с пиридоксальфосфатом и возникновение "внешнего" или субстратного альдимина (стадия 5), одной из форм которого является хинолоид показанный на рис.2. Последующее протонирование атома С-4' дает кетимин (стадия 6), при гидролизе которого образуется ПМФ - форма фермента и оксокислота (стадии 7 и 8). Далее реакция идет в обратном направлении между ПМФ - формой трансаминазы и другой ококислотой и приводит к регенерации ПЛФ - формы ("внутреннего" альдимина) и образованию новой аминокислоты.
Таким образом, реакции переаминирования являются обратимыми и универсальными для всех живых организмов. Пиридоксальфосфат в этих реакциях выполняет роль переносчика аминогруппы и в конечной стадии освобождается и может вновь вступить в ферментативный процесс.
Рисунок 2 - Основные интермедиаты, образующиеся в ходе реакции переаминирования.
а - внутренний альдимин;
б - нековалентный комплекс Михаэлиса;
в - то же, что у, но атом иминного азота протонирован;
г- геминальный диамин;
д- внешний альдимии;
е - хинолоид;
ж - кетимин;
з - карбиноламин;
и- пиридоксаминфосфат.
1.2.4 Биологическая роль трансаминаз
Аминокислоты, не использованные для синтеза белков и других производных, не накапливаются в организме в больших количествах. Они подвергаются различным ферментативным превращениям и, в конечном счете, распаду /32/. Важную роль в азотистом обмене играют процессы перехода одних аминокислот на другие, в результате ферментативных реакций переаминирования. При этом происходит обратимый перенос NH2 - группы от L - аминокислоты на L - кетокислоту без промежуточного образования аммиака. Таким образом, в реакции переаминирования участвуют L - аминокислота как донор и L - кетокислота как акцептор аминогруппы. Эти реакции катализируются особыми ферментами трансаминазами. Коферментом трансаминаз является пиридоксаль - 5Ч - фосфат, который и является промежуточным переносчиком аминогруппы от аминокислоты на кетокислоту/27/.
Широкое распространение трансаминаз в животных тканях, у микроорганизмов и растений, их высокая резистентность к физическим, химическим и биологическим факторам, абсолютная стереохимическая специфичность по отношению к L - и Д - аминокислотам, высокая каталитическая активность в процессах переаминирования послужили предметом детального исследования роли этих ферментов в обмене аминокислот/33/. Тип катализируемой химической реакции в сочетании с названием субстрата служит основой для систематического наименования ферментов. Согласно Международной классификации трансаминазы относят к 2 классу трансфераз, 4 подклассу - аминотрансферазы; наименование их составляется по форме «донор - транспортируемая группа - трансфераза» /34/. А. Е. Браунштейн выдвинул гипотезу о возможности существования в живых тканях не прямого пути дезаминирования аминокислот через реакции переаминирования, названного им трансдезаминированием. Основой для этой гипотезы послужили данные о том, что из всех природных аминокислот в животных тканях с высокой скоростью дезаминируются только L - глутаминовая кислота. Согласно этой теории большинство природных аминокислот сначала реагируют с L - кетоглутаровой кислотой в реакции переаминирования с образованием глутаминовой кислоты к соответствующей кетокислоте/30/. Образовавшаяся глутаминовая кислота подвергается окислительному дезаминированию под действием глутаматдегидрогеназы. Механизм трансдезаминирования можно представить в виде следующей схемы /13/:
R1- CH (NH2)-COOH L-кетоглутарат НАДН2 + NH3
R1- CO- COOH L-глутамат НАД + Н2О
трансаминаза глутаматдегидрогеназа
Обе реакции (переаминирование и дезаминирование глутаминовой кислоты) являются обратимыми, создаются условия для синтеза любой аминокислоты, если в организме имеются соответствующие L - кетокислоты. Организм животных и человека не обладает способностью синтеза углеводородного скелета (L - кетокислот) так называемых незаменимых аминокислот, этой способностью обладают только растения и многие микроорганизмы.
В живых организмах осуществляется синтез природных аминокислот из L - кетокислот и аммиака, этот процесс был назван А. Е. Браунштейном трансреаминированием. Сущность его сводится к восстановительному аминированию L - кетоглутаровой кислоты, с образованием глутаминовой кислоты, и к последующему переаминированию глутамата с любой L - кетокислотой. В результате образуется L - аминокислота, соответствующая исходной кетокислоте, и вновь освобождается L - кетоглутаровая кислота, которая может акцептировать новую молекулу аммиака/35/.Схематически роль трансаминаз в дезаминировании в биосинтезе аминокислот можно представить в следующем виде/28/:
Страницы: 1, 2, 3, 4, 5