Рефераты. Как ведут себя макросистемы вдали от равновесия? Пояснение принципа локального равновесия

p align="left">5. Как осуществляется математическое моделирование биологической эволюции

Математическое моделирование как научное направление еще очень молодо, и, судя по всему, его эволюция в рамках компьютерно-технологических сдвигов продолжается .

Построение моделей представляет собой "применение фундаментальных законов природы, вариационных принципов, аналогий, иерархических цепочек", а процесс построения модели включает в себя следующие этапы:

«Cловесно-смысловое описание объекта или явления" ("формулировка предмодели»);

«Завершение идеализации объекта» и упрощение описания;

Переход «к выбору или формулировке закона (вариационного принципа, аналогии и т.п.)» и его записи в математической форме;

«Завершает формулировку модели ее «оснащение» (задание начального состояния и параметров объекта). Этот этап особенно важен, поскольку:

«И, наконец, формулируется цель исследования модели (найти закон преломления света, достичь понимания закономерностей изменения популяции, определить требования к конструкции ракеты, запускающей спутник, и т.д.)»;

Модель изучается всеми доступными методами (в том числе с применением различных подходов и вычислительных методов);

В результате исследования модели достигается поставленная цель. При этом "должна быть установлена всеми возможными способами (сравнением с практикой, сопоставлением с другими подходами) ее адекватность - соответствие объекту и сформулированным предположениям".

Последовательность этапов моделирования, соответствующая этому разбиению, представлена нами на рис. 1.

Рис.1

Плодотворность методологии математического моделирования при решении разнообразных задач за прошедшие годы была неоднократно подтверждена многочисленными примерами из области механики, термодинамики, биологии, экономики и социальных наук.

Демографическим проблемы, связанным со старением и плохим воспроизводством населения, в последнее время уделяется все больше внимания . Исследования на человеческом материале в силу целого ряда обстоятельств часто не позволяют получить убедительных результатов. Проблема связи старения с генетическими (наследственными) факторами, условиями жизни и окружающей средой относятся к числу таких проблем. Эксперименты на животных с более простой генетической и физиологической организацией и с коротким жизненным циклом позволяют глубже понять общебиологические основы старения и, в принципе, начать разработку мер по продлению жизни и предотвращению преждевременного старения у человека. Стандартные эксперименты чаще всего ставятся на популяциях плодовитых и короткоживущих насекомых (плодовая мушка Drosophila и средиземноморская мушка Ceratitis Capitata). Исследование последней имеет и самостоятельное прикладное значение, поскольку в ряде эта мушка является наиболее распространенным вредителем фруктовых плантаций, и уже около десяти лет выращивается в промышленных масштабах в Мексике в рамках программ биологической защиты урожая.

«Академический» этап моделирования старения представлен классическими популяционно-генетическими моделями Фишера, физиологическими моделями, моделями "теории надежности" и термодинамическими моделями. Переход к активным компьютерным методам исследования связан с переходом к методам Монте-Карло. Следуя давней традиции , физики с энтузиазмом берутся за решение кардинальных вопросов жизни, в данном случае за разработку моделей старения. Наиболее известна изящная bit-string модель бразильского физика Пенны (представляющая геном в виде строки двоичных сигналов). Однако, как и в случае анализа "жизни с точки зрения физика", результаты этой работы оказались интересными в основном для самих физиков и для широкой публики. Разрабатываемые вне связи с экспериментальными исследованиями, эти "модели старения" оказались абсолютно неадекватными с точки зрения биолога.

Но новом этапе цели математического моделирования связаны в первую очередь с желанием усовершенствовать процесс извлечения информации о механизмах старения и защитных механизмах у экспериментальных животных на основе реальных наблюдаемых в эксперименте данных. Математические модели позволяют выдвигать биологически обоснованные и формально корректные гипотезы о таких механизмах и тестировать их. Поэтому не удивительно, что в последнее время практически все ведущие экспериментальные команды в мире, ведущие исследования механизмов старения на популяциях насекомых, включили в свой состав специалистов по моделированию.

Общая цель этих работ, хотя и слабо формализованная, состоит в кардинальном изменении роли моделирования в экспериментальном исследовании живых систем. Вместо традиционного анализа "общих тенденций" и воспроизведения в модели средне-абстрактного объекта (организма или популяции), практика моделирования биосистем неуклонно движется к он-лайновому включению модели в сам процесс экспериментальных исследований. Результаты модельного исследования i-го эксперимента должны стать исходными позициями для постановки (i+1)-го. Можно даже сказать, рискуя вызвать справедливый гнев биологов-экспериментаторов, что сами экспериментальные исследования становятся средством верификация математической модели. Трудно ожидать, что в ближайшее время этот процесс завершится. Но сама цель становится все более очевидной.

Характерным примером такого взаимодействия могло бы стать наше "компьютерное повторение" классических экспериментов Майнарда Смита , не будь оно проведено сорок лет спустя после самих экспериментов. Мы смогли в рамках единой модели (гомеостатическая модель старения) объединить две ранних теории старения, Теорию темпа жизни и Пороговую теорию.

6. Какие факторы определяют изменения климата планет? Что доказывает единовременное происхождение тел Солнечной системы

Изменение климата -- колебания климата Земли в целом или отдельных её регионов с течением времени. Его изучением занимается наука палеоклиматология. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, с недавних пор, деятельность человека. В последнее время термин «изменение климата» используется как правило (особенно в контексте экологической политики) для обозначения изменения в современном климате .

Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека. Внешние процессы, формирующие климат, -- это изменения солнечной радиации и орбиты Земли.

изменение размеров и взаимного расположения материков и океанов,

изменение светимости солнца,

изменения параметров орбиты Земли,

изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,

изменение концентрации парниковых газов (СО2 и CH4) в атмосфере,

изменение отражательной способности поверхности Земли (альбедо),

изменение количества тепла, имеющегося в глубинах океана.

Галактика М 82 в созвездии Большой Медведицы. Около 3 млн лет назад из нее было выброшено вещество объемом в 6 млн солнечных масс, и часть его получила скорости, близкие к световым, т.е. произошел взрыв с выбросом энергии в 1065 Дж, эквивалентный одновременной вспышке 10 млн Сверхновых. Для взрыва объекта Лебедь А выброс энергии оценивается в 10 тысяч раз больше. Такие огромные значения энергии, превышающие в несколько раз гравитационную энергию связи всех звезд в радиогалактике, имеют своим источником область галактического ядра, где генерируются релятивистские электроны.

Планеты смещаются по отношению к Солнцу в одной фазе, т.е. одновременно, пропорционально массам получив запас кинетической энергии и скорость, они примерно одновременно достигают максимального удаления, затем почти одновременно начинают движение вспять.

7. Обоснуйте на основе эволюционных представлений о развитии структурных уровней организации материи становления ноосферы. В чем состоит суть концепции ноосферы по Вернадцкому? Существует ли ноосфера сейчас

Вернадский говорил, что «биосфера перейдет однажды в сферу разума ноосферу. Произойдет великое объединение, в результате которого развитие планеты сделается направленным силой Разума». Сам термин «ноосфера» возник на семинаре, где выступал Вернадский со своей концепцией биосферы. Его широко использовали Э.Ле Руа и П.Тейяр де Шарден, но понимали его как «оболочку мысли» на планете. По мнению Тейяра де Шардена, возникновение мысли -- явление, которое знаменует собой «трансформацию, затрагивающую состояние всей планеты».

Ноосфера -- это высшая ступень интеграции всех форм существования материи, когда любая преобразующая деятельность человека будет основываться на научном понимании естественных и социальных процессов и органически согласовываться с общими законами развития природы. Это высший этап эволюции системы «природа -- общество», который только формируется и должен быть, если человечество хочет жить без глобальных потрясений. Такой тип отношений «природа -- общество» соответствует коэволюции. В структуре ноосферы можно выделить человечество, совокупность научных знаний, сумму техники и технологий в единстве с биосферой.

Солнечная энергия запустила геохимические циклы круговорота химических элементов, в которые втягиваются все новые массы вещества. Образовавшиеся толщи осадочных пород запасли энергию биомассы (в форме газа, угля, нефти). Эти преобразования планетарного масштаба и произвели человека -- носителя Разума. Человек зависит от биосферы, он -- ее порождение. Чтобы подчинить своему развитию среду обитания, он должен овладеть биосферными процессами, иначе будет обречен как биологический вид. Но обеспечение коэволюции человека, природы и общества требуют введения некоторых ограничений деятельности. Поэтому переход в ноосферу означает обязанность человека взять ответственность за дальнейшую эволюцию биосферы в целом, т.е. и за себя, действуя по принципу «не навреди». В учении о ноосфере Вернадский впервые осознал и попытался осуществить синтез естественных и общественных наук в исследовании глобальной деятельности человечества. Живое вещество преобразует верхнюю оболочку Земли, постепенно человек становится силой геологического масштаба, поэтому и несет ответственность за эволюцию планеты. Сам он использовал это понятие в разных смыслах: как состояние планеты, когда человек становится преобразующей геологической силой; как область активного проявления научной мысли; как основной фактор перестройки и изменения всей биосферы.

Ноосферный этап (этап допустимого развития) состоит в том, что экономические и экологические проблемы взаимоотношений с биосферой определяются не выживанием человечества, а сохранением экосферы в гармонии живой и неживой материи, сохранением гармонии природы с сохранением ресурса животного и растительного миров, сосуществующих в биоценозах и экосистемах.

Отношения в системе «человек--природа» строились по-разному в разных культурных традициях. В классической западноевропейской культуре: природа -- пассивный материал для проявления творческих возможностей человека; в восточной культуре она -- источник благоговейного почитания до полного растворения в ней человеческого начала; в российской -- сложилась самоценность природы, она -- активный материал, соразмерный статусу человека и мироздания. Вернадский наметил для достижения этапа ноосферы серию мероприятий: решить проблему разумной плотности народонаселения и оптимальной численности жителей Земли; ликвидировать бедность; расширить границы биосферы и выйти в космос; открыть новые источники энергии; оценить допустимость и достаточность экономического развития в рамкахсбалансированного самовосстановления биосферы; исключить войны из жизни общества; поднять культуру человека на всех уровнях организации общества.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.