Рефераты. Концепции развития современных технологий и энергетики

тгораживаясь таким образом от реальных информационных потоков жизни людей с ее реальными голодом, холодом, болезнями, войнами, страданиями и т.п. и оказавшись в виртуальном пространстве, где нажатием кнопки можно взорвать инопланетный космический корабль, сжечь город, наслать повальные болезни, насладиться интимом с "любимым человеком", наконец, быть "убитому" самому игроку в этих виртуальных видео-аудиотактических мирах, человек теряет ощущение реальности жизни. Он начинает пренебрегать реальными информационными потоками сообществ людей (от ячейки общества - семьи - до более крупных образований), жить в выдуманном мире, где ему хорошо и удобно только одному. Такой человек вряд ли сможет восхищаться ранним восходом солнца с его золотистыми, скользящими по земле лучами. Для него окажутся ненужными ни классическая музыка, ни классические произведения искусства и литературы, на которых воспитывались многие поколения людей, наделенных высокими нравственными качествами.

В той или иной мере всем понятна опасность и страшная губительная сила ядерного, химического и бактериологического оружия, поражающего тело, но остается пока незамеченным другое оружие также массового поражения, которое поражает душу человека, делая его одиноким и беззащитным в придуманном им виртуальном мире. В этом одно из сильных проявлений отрицательного начала мультимедийных систем. Означает ли это, что следует ограничивать новые возможности мультимедийных систем? Конечно, нет. Известно, что нож в руках хирурга - добро, а в руках бандита - зло. Полезно помнить, что мультимедийные системы только при разумном их использовании могут непременно способствовать развитию личности и общества. Следует ожидать, что наиболее вероятное использование мультимедийных систем будет не игровым, а научным и учебным, способствующим упрощению и облегчению сложного процесса познания действительности.

Представленные выше рассуждения - одна из возможных интерпретаций диалектического дуализма мультимедийных систем. Нельзя исключать, что некоторые из рассмотренных утверждений носят дискуссионный характер. Но в дискуссии рождается истина.

4. Микро- и наноэлектронная технологии

Характерная особенность современного естествознания - рождение новых, быстро развивающихся наук на базе фундаментальных знаний. К одной из таких наук относится сформировавшаяся в недрах физики микроэлектроника, перерастающая в последнее время в наноэлектронику.

У микроэлектроники и наноэлектроники один общий корень - электроника. В соответствии со строгим определением электроника - наука о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых), используемых для передачи, обработки и хранения информации. Возникла она в начале XX в. На ее основе были созданы электровакуумные приборы, в том числе и электронные лампы (диод, триод, тетрод, пентод и т.д.).

С начала 50-х годов интенсивно развивается твердотельная электроника, прежде всего полупроводниковая. В начале 60-х годов возникла микроэлектроника - наиболее перспективное направление электроники, связанное с созданием приборов и устройств в микроминиатюрном исполнении и с использованием групповой (интегральной) технологии их изготовления. Возникновение микроэлектроники вызвано непрерывным усложнением функций и расширением областей применения электронной аппаратуры, что требовало уменьшения ее габаритов и массы, повышения быстродействия и надежности.

Основу электронной базы микроэлектроники составляют интегральные схемы, выполняющие заданные функции блоков и узлов электронной аппаратуры, в которых объединено большое число микроминиатюрных элементов и электрических соединений, изготовляемых в едином технологическом процессе. Микроэлектроника развивается в направлении уменьшения размеров содержащихся в интегральной схеме элементов (до 0,1-1,0 мкм), повышения степени интеграции (до 106-107 элементов на кристалл), плотности упаковки (до 105 элементов в 1 мм3), а также использования различных по принципу действия приборов (опто-, акусто-, криоэлектронных, магниторезистивных и др.). В последнее время ведутся интенсивные работы по созданию интегральных схем, размеры элементов которых определяются нанометрами (10-9 м), т.е. постепенно набирает силу наноэлектроника - наиболее важное направление микроэлектроники, характеризующее современный этап развития естествознания.

Разнообразные микроэлектронные приборы и устройства в различных формах исполнения нашли широкое применение практически во всех технических средствах, связанных с многими сферами деятельности человека. Достижения в микроэлектонике способствовали созданию космических кораблей и управляемых ядерных реакторов. Современная аудио - и видеоаппаратура с достаточно высоким качеством звучания и изображения - это тоже продукт микроэлектроники. На промышленной микроэлектронике базируется автоматизированное производство изделий, узлов, механизмов и машин для различных отраслей экономики. Элементная база многочисленных и разнообразных ЭВМ, включающих и персональные компьютеры, - это тоже микроэлектроника.

Едва ли можно назвать такого человека, который не был бы прямо или косвенно связан с микроэлектронной аппаратурой, прежде всего как пользователь. Вполне очевидно, что от степени внедрения микроэлектронных средств зависит не только уровень совершенства того или иного технического устройства, но и прогресс, а также темпы развития той или иной отрасли современной экономики. На первый взгляд может показаться лишним знание концепций развития микроэлектроники, особенно для специалистов нетехнических направлений и, в частности, для будущих экономистов. Однако настоящая экономика прежде всего связана с жизнью и в первую очередь с потребностями человека. Изучение потребностей человека без знаний возможностей производить материальные ценности хотя и необходимо, но крайне недостаточно для формирования специалиста высокой квалификации с широким кругозором. Не вызывает сомнения, что таким специалистом наряду с другими должен быть экономист. Именно экономист, как правило, производит первую экспертную оценку нового технического предложения. И от его оценки зависит во многом дальнейшая судьба технического предложения. А так как практически все современные технические предприятия в той или иной степени связаны либо с микро электронной продукцией, либо с ее непосредственным производством, то знание основных проблем, тенденций развития и потенциальных возможностей микроэлектроники не менее важно, чем представление о производительных силах и производственных отношениях. На базе именно таких всесторонних знаний может быть принято наиболее удачное решение, способствующее развитию какого-то производства либо отрасли в целом. Кроме того, также важно знать, и прежде всего экономисту, какой ценой будет решена поставленная конкретная задача. Но для этого полезно представлять, какой ценой дались известные достижения, существенно изменившие сущность производительных сил и характер производственных отношений.

4.1 Развитие твердотельной электроники

Эпоха развития твердотельной электроники имеет более чем столетнюю историю; она началась с возникших и долго необъясняемых физических загадок, так называемых "плохих" проводников. Еще в XIX в. выдающийся физик М. Фарадей столкнулся с первой загадкой - с повышением температуры электропроводность исследуемого образца возрастала по экспоненциальному закону. К тому времени было известно, что электрическое сопротивление многих проводников линейно увеличивается с ростом температуры. Спустя некоторое время французский физик А.С. Беккерель (1788-1878) обнаружил, что при освещении "плохого" проводника светом возникает электродвижущая сила - фото ЭДС - вторая загадка.

Было обнаружено, кроме того, изменение сопротивления селеновых стержней под действием света, что в определенной степени подтвердило сущность второй загадки, связанной с фотоэлектрическими свойствами "плохих" проводников. В 1906 г. немецкий физик К.Ф. Браун (1850-1918) сделал важное открытие: переменный ток, проходя через контакт свинца и пирита, не подчиняется закону Ома; более того, свойства контакта определяются величиной и знаком приложенного напряжения. Это была третья физическая загадка.

Примерно за 40 лет физических исследований состав "плохих" проводников существенно расширился. К ним были отнесены сульфиды и оксиды металлов, кремний, закись меди и т.п. Этот класс веществ стали называть полупроводниками. Эффекты выпрямления электрического тока, фотопроводимость полупроводников стали применять для практических целей. Были созданы фотоэлемент и твердотельный выпрямитель электрического тока.

В 1879 г. американский физик Э. Холл (1855-1938) открыл явление возникновения электрического поля в проводнике (тонкой пластине золота) с током, помещенном в магнитное поле, направленное перпендикулярно току. Электрическое поле возникало и в полупроводниках: в одних полупроводниках электрическое поле направлено в одну сторону, а в других - в противоположную. Предполагалось, что направление данного поля определяют электроны и какие-то, в то время неизвестные, положительно заряженные частицы. Открытие Э. Холла - четвертая загадка "плохих" проводников.

Созданная Дж. Максвеллом теория электромагнитного поля не объясняла ни одну из четырех загадок. Пока физики-теоретики искали отгадки, инженеры все шире применяли полупроводники. В начале нынешнего столетия ученые увлеклись исследованием беспроводной связи. Были созданы первые приемники радиоволн, способные детектировать сигналы. В них использовались контакты из полупроводниковых материалов и металла. Кристаллические полупроводниковые детекторы позволяли выпрямлять радиочастотные сигналы, но усиливать их не могли.

Изучая свойства кристаллического детектора, наш соотечественник, выдающийся радиоинженер О. Лосев (1903-1942) обнаружил на вольт-амперной характеристике кристалла участок с отрицательным дифференциальным сопротивлением, на основе чего создал в 1922 г. генерирующий детектор. Это был первый детектор, способный усиливать и генерировать электромагнитные колебания. Основой его служила контактная пара: металлическое острие - полупроводник (кристалл цинкита). Однако хотя открытие О. Лосева и вызвало большой интерес в те годы, оно не нашло промышленного внедрения.30-40-е годы - пора расцвета электровакуумных ламп, которые широко применялись в различных устройствах радиосвязи. Ненадежные в те годы полупроводниковые приборы не могли конкурировать с электронными лампами. В полупроводниковой электронике четыре загадки оставались неразгаданными почти 100 лет.

Тем не менее исследование свойств полупроводников продолжалось. Предпринимались поиски природных и синтезированных полупроводников - интерметаллических соединений с полупроводниковыми свойствами. Исследовательские работы существенно активизировались после создания зонной теории полупроводников, в соответствии с которой в твердом теле энергетическое состояние электронов образуют так называемые зоны, разделенные промежутками запрещенных значений энергий. В верхней зоне находятся свободные заряды; она названа зоной проводимости. Нижняя зона, в которой заряды связаны, получила название валентной зоны. Между ними расположена запрещенная зона. Если ее ширина велика, то в твердом теле электропроводность отсутствует и оно относится к диэлектрикам. Если же ширина запрещенной зоны невелика, то электроны могут возбуждаться различными способами и переходить из валентной зоны в более высокоэнергетическую. Например, при разогреве твердого тела происходит тепловое возбуждение электронов, повышается их энергия и они переходят в зону проводимости; при этом повышается электропроводность твердого тела, а значит, уменьшается его сопротивление. С ростом температуры число возбужденных электронов увеличивается, стало быть сопротивление полупроводника падает. Возможен и другой механизм возбуждения электронов и перевод их из валентной зоны в зону проводимости, при котором они становятся свободными под действием света. Таким образом, зонная теория объяснила две первые загадки: почему сопротивление полупроводников падает при нагревании и освещении.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.