Рефераты. Метаболічні особливості фізіології та біохімії водоростей

p align="left">Припускають, що в майбутньому частка водоростей у харчовому раціоні людини буде неухильно зростати", Отримані в Японії штами і японські технології аквакультуры широко використовують в інших країнах:

США, Канаді, Франції, Норвегії, Данії, Великобританії. У нашій країні морські водорості вирощують у далекосхідних морях, на Чорному, Білому і Баренцевому морях. Їх використовують як харчовий продукт як у свіжому, так і в консервованому виді, а також при виготовленні хлібобулочних і кондитерських виробів.

Доцільність використання морських водоростей у якості харчових і кормових продуктів, а також джерел промислової сировини в даний час не викликає сумнівів. Розроблено технології контрольованого одержання суперечка водоростей, використання штучних субстратів для їхнього вирощування, методи збереження і переробки біомаси, механізуються роботи зі збору врожаю, проводиться селекція продуктивних штамів, оптимизируется мінеральне харчування. Вирощування морських водоростей здобуває промисловий характер і стає усе більш рентабельною галуззю рослинництва, незважаючи на деяких економічних і екологічних труднощів. Зокрема, при освоєнні шельфу під водорослевые плантації виявляється побічний негативний ефект від застосування добрив, особливо в мілководних лагунах: порушується екологічна рівновага, зменшується зміст кисню у воді, розвиваються токсические види водоростей. Виникають проблеми боротьби з хворобами до адвентивними рослинами, що засмічують плантації промислово коштовних видів водоростей.11 Водоросли. Справочник. - К.: наукова думка, 1984. - 605 с.

Значно повільніше здобувають визнання мікроводорості як джерело продуктів харчування і кормів. Протягом порівняно короткого періоду (40 років) неодноразово змінювалися обсяг і напрямок науково-дослідних робіт, зв'язаних з вивченням можливостей використання мікроводоростей у господарській сфері. Так, після другої світової війни в США, ЧССР і деяких інших країнах мікроводорості посилено вивчали як додаткове джерело харчових і кормових продуктів. Однак, починаючи з 60-х років, увага до них як до об'єктів промислового культивування значно знизилося, і лише в Японії, КНР, Мексиці і Радянському Союзу дослідження в цьому напрямку продовжувалися і дали практичні результати. Тимчасове розчарування в перспективах використання культур мікроводоростей можна пояснити недостатністю наукового обґрунтування, відсутністю попередніх селекційно-генетичних досліджень, недосконалістю методів вирощування і переробки біомаси водоростей, високою собівартістю одержуваних продуктів. Не завжди позитивними були результати споживання нативной біомаси водоростей. Низька перевариваемость вэдоростей нерідко обумовлювалася наявністю в них міцної целюлозної оболонки, що бідує в попередній обробці і руйнуванні, чи токсичністю окремих об'єкті. У 70-і роки число робіт з масового культивування мікроводоростей збільшилося.

Як об'єкти культивування використовують різні штами видів, пологів. Але в цілому культивируемые види складають незначну частину світовий альгофлори, що нараховує близько 40 тис. видів.

В даний час мікроводорості культивують у значних масштабах у ряді країн. Так, на острові Тайвань масова культура Clorella нараховує вже більш 14 років, даючи щорічно 1,5 тис. т сухої біомаси; у Малайзії і на Філіппінах для харчових цілей щорічно використовують більш 500 т хлорели. У Мексиці за 9 років культивування Sрiгulinа у водах рисових полів отримане понад 3 тис. т біомаси; передбачається збільшити врожай до 2 тис. т у рік. У цій країні розроблена технологія одержання з Sрiгulinа безбарвного порошку, що у кількості 5--10 % додають до хлібобулочних виробів і інших харчових продуктів. За даними мексиканських дослідників, білки цих водоростей добре засвоюються людиною, не викликаючи побічних явищ. Деякий досвід використання хлореллы й інших мікроводоростей накопичений у Японії, Канаді, США, Франції, Новій Зеландії, Австралії, Кореї й іншим країнам.

Розділ 4. Участь водоростей в біохімічних процесах

4.1 Процес фотосинтезу

Незважаючи на дивне різноманіття життєвих форм рослин, переважна більшість з них поєднує унікальна особливість, що визначається способом їхнього харчування. На відміну від тваринних організмів і багатьох бактерій, що використовують для своєї життєдіяльності готові органічні сполуки, у рослин виробилася в ході еволюції здатність використовувати для харчування такі цілком окислені речовини, як вуглекислота і вода, і створювати на їхній основі органічні сполуки. Процес цей здійснюється в природі за рахунок енергії сонячного світла і супроводжується виділенням кисню. Використання світлової енергії для біологічних синтезів стало можливо завдяки появі в рослин комплексу поглинаючих світло пігментів, найголовнішим з який є хлорофіл. Процес світлового і вуглецевого харчування рослин одержав назву фотосинтезу й у загальному виді може бути записаний наступним сумарним рівнянням:

6 СО2 + 12 Н2О = С6Н12О6 + 6 Н2О + 6 О2 + 2815680 Дж

З рівняння видно, що на кожні 6 грам-молекул вуглекислоти і води синтезується грам-молекула глюкози, виділяється I грам-молекул кисню і накопичується 2815680 Дж енергії. Таким чином, функція фотосинтезу рослин є, власне кажучи, біохімічним процесом перетворення світлової енергії в хімічну.11 Жизнь растений. В 6-ти томах. - М.: Просвещение, 1977.

Водорості, уже найпростіші з них - синьо-зелені, є першими організмами, у яких з'явилася в процесі еволюції здатність здійснювати фотосинтез з використанням води як джерело (донора) водню і виділенням вільного кисню. тобто процес, властивий всім іншим водоростям, і за ними і вищими рослинами.

Здійснюється рослинами в грандіозних масштабах процес перетворення енергії світла в хімічну енергію продуктів фотосинтезу є практично єдиним руслом, через яке вливається у біологічно прийнятній формі енергія, необхідна для підтримки життя і круговороту речовин у біосфері нашої планети. Саме тому видатний росіянин натураліст К. А. Тімірязєв говорив про "космічну роль зелених рослин". Про розміри фотосинтетичної діяльності рослин у планетарному масштабі можно судити по тому, що весь кисень атмосфери Землі має, як зараз доведене, фотосинтетичне походження. Поклади кам'яного вугілля являють собою своєрідний "запас" перетвореної в результаті фотосинтезу рослин сонячної енергії, складовані у визначені геологічні епохи.

Другою особливістю харчування водоростей і інших фотосинтезуючих рослин, не менш важливої, хоча і не такий специфічний, як фотосинтез, є їхня здатність засвоювати азот, сірку, фосфор, калій і інші мінеральні елементи у виді іонів мінеральних солі і використовувати їх для синтезу таких найважливіших компонентів живої клітки, як амінокислоти, білки, нуклеиновые кислоти, макроергічні з'єднання, речовини вторинного обміну (алкалоїди, терпени, фенольні сполуки, різні вітаміни, фітогормони й ін.). Серед синьо-зелених водоростей існують форми, здатні здійснювати процес фіксації вільного азоту атмосфери і перетворювати його в органічні азотисті речовини свого тіла.

4.2 Походження фотосинтезу

Яким же чином виник процес фотосинтезу? Що йому передувало і до яких наслідків привело появу цього процесу на Землі?

Відповідно до загальновизнаного в даний час еволюційної теорії походження і розвитку життя, що більш 50 років тому була сформульована А. И. Опарін, первинні, здатні до самовідтворення живі утворення виникли в результаті абиіогенної хімічної еволюції. Будучи оточеними близькими по складу, але ще неживими органічними сполуками, ці первинні істоти могли здійснювати в бескислородной середовищу анаэробный гетеротрофний тип харчування за допомогою невеликого набору ферментоц. Поступове виснаження і деградація органічних речовин, синтезованих абіогенним шляхом, супроводжувалися нагромадженням усе більш окислених з'єднань, аж до появи найбільш бідною енергією з'єднання вуглецю - вуглекислоти. Це спричиняло необхідність усе більшого і більшого удосконалювання й ускладнення ферментативною апарата, необхідного для асиміляції усе більш окислених речовин. У цих умовах, що усе ще характеризувалися відсутністю у середовищі кисню, цілком ймовірне виникнення первинних автотрофних організмів, що здійснювали відновлення вуглекислоти за рахунок хімічної енергії, отриманої з мінеральних речовин. Такий тип харчування одержав назву хеморедукції. Серед сучасних організмів відома група сульфатредукуючих мікроорганізмів, що відновлюють сульфати до сірководню, використовуючи для цієї мети молекулярний водень.11 Жизнь растений. В 6-ти томах. - М.: Просвещение, 1977.

Поява в цей період, що характеризувався сильно відбудовними умовами середовища, светпоглощающих пигментов-фотосенсибілізаторів призвело, мабуть, до заміни хімічної енергії в процесах хеморедукції на світлову. Виник найпростіший тип фотоавтотрофного харчування, що одержав назву фоторедукції і бактеріальний фотосинтез. Такий тип харчування здійснюють сучасні фототрофні бактерії - пурпурні сіркобактерії і зелені сіркобактерії, у яких роль пигмента-фотосенсибілізатора виконує бактеріохлорофіл і які є анаеробами. Пурпурні і зелені сіркобактерії відновлюють вуглекислоту за рахунок енергії світла, використовуючи як Н-донора сірководень:

6 СО2 + 12 Н2S = С6Н12О6 + 6 Н2О + 12 S

Представлене підсумкове рівняння бактеріального фотосинтезу (фоторедукції) дуже нагадує, як ми бачимо, приведене вище сумарне рівняння фотосинтезу хлорофілоносних рослин. У результаті порівняльного аналізу Ван-Ниль показав, що обидва ці процесу можуть бути записані в загальному виді одним підсумковим рівнянням:

СО2 + 2 Н2А = ( СН2О )+ Н2О + 2А

де Н2А - донор водню, у якості якого фотосинтезуючі бактерії використовують сірководень, а інші рослини - воду. Вода є більш окисленим з'єднанням у порівнянні із сірководнем. Використання її як донора водню позв'язано з необхідністю додаткової витрати енергії і стало можливо завдяки подальшому удосконалюванню фотохімічного апарата, що складалося в появі в рослин (починаючи із синьо-зелених водоростей) хлорофілу (замість бактеріохлорофілу) і додаткової фотохімічної системи, так званої "фотосистеми П".

Використання води як донора водню привело до того, що в процесі фотосинтезу став виділятися кисень, що, у свою чергу, ознаменувало перехід від анаеробної до аеробного життя на нашій планеті.

На еволюційний зв'язок фоторедукції і фотосинтезу може вказувати здатність ряду синьо-зелених, зелених, червоних і бурих водоростей оборотно переходити до фоторедукції при перекладі їх в анаеробні умови в атмосферу водню.

Таким чином, фотоавтотрофний тип харчування і фотосинтез виникли в процесі еволюції як "надбудова" над первинним гетеротрофним типом харчування. Поява на Землі фотосинтезу була обумовлена всім ходом попередньої біологічної еволюції і послужило поворотним пунктом у переході від анаеробного до аеробного типу обміну речовин.

Розглянута схема дає представлення лише про загальні риси еволюції фотосинтезу і є в значній мірі гіпотетичною. Багато етапів еволюції фотосинтезу і тим більше її деталі залишаються незрозумілими, ряд моментів по-різному інтерпретується вченими.

Неясним, наприклад, залишається питання про походження хлоропластів вищих рослин. Існує точка зору про эндосимбиотиче-ском їхнє походження в результаті "захоплення" первинних фотосинтезуючих організмів, типу сучасних синьо-зелених водоростей, гетеротрофним організмом. На таку можливість указує визначена генетична автономність хлоропластів, а також подібність їх ДНК, ряду найважливіших ферментів, властивостей рибосом і ряду РНК такими у прокаріотичних організмів, зокрема синьо-зелених водоростей. Разом з тим існує і визначена генетична підпорядкованість хлоропласта ядерному геному, що може вказувати на "пряму" еволюцію фотосинтетичного апарату сучасних рослин від первинних фотосинтезуючих організмів. Усі ці питання вимагають подальшого детального вивчення механізмів, молекулярної організації, генетичного контролю і фізіологічних властивостей фотосинтезу і його апарата.

Висновок

Водорості - основні продуценти кисню і органічних речовин в водному середовищі, а також в наземних місцях, які мало придатні до життя вищих рослин.

Приймаючи участь в процесах кругообігу речовин в природі, водорості являються активними агентами самочищення водойм, первиннихгрунтоутворювальних процесів і відновлення грунтової родючості.

Водорості, зокрема синьо-зелені, були першими, найдавнішими киснепродукуючими організмами на нашій планеті. Водорості являються родоначальниками вищих рослин. В теперішній час водоростям належить важлива роль у вирішенні ряду глобальних проблем, які хвилюють все людство: продовольчої, енергетичної, охорони оточуючого середовища, освоєння космічного простору. Харчові властивості водоростей не поступаються вищим рослинам. Біомаса їх відрізняється високим вмістом повноцінних білків, вітамінів та інших біологічно активних речовин.

На думку деяких вчених водорості являються однією із можливостей подолання енергетичної кризи - біоконсервація сонячної енергії, тому що цей шлях не загрожує змінам екологічної ситуації в біосфері.

Дуже велика роль водоростей в біохімічних процесах. На відміну від тваринних організмів і багатьох бактерій, що використовують для своєї життєдіяльності готові органічні сполуки, у рослин виробилася в ході еволюції здатність використовувати для харчування такі цілком окислені речовини, як вуглекислота і вода, і створювати на їхній основі органічні сполуки. Процес цей здійснюється в природі за рахунок енергії сонячного світла і супроводжується виділенням кисню. Використання світлової енергії для біологічних синтезів стало можливо завдяки появі в рослин комплексу поглинаючих світло пігментів, найголовнішим з який є хлорофіл.

Література

Водоросли, лишайники и мохообразные СССР. - М.: Изд-во Мысль. - 1978. - 560 с.

Водоросли. Справочник. - К.: наукова думка, 1984. - 605 с.

Вопросы физиологии, биохимии, цитологии и флоры Украины.- М., 1974. - 540 с.

Гудвин Т., Мерсер Э. Введение в биохимию растений: В 2-х томах. - М.: Мир, 1986. - 312 с.

Жизнь растений. В 6-ти томах. - М.: Просвещение, 1977.

Жуковский П.М. Ботаника: Учебник. - М.: Высшая школа, 1964. - 666с.

Кретович В.Л. Биохимия растений. Учебник для биол. спец. Ун-тов. - М.: Высшая школа, 1986. - 503 с.

Малый практикум по низшим растениям. Учебное пособие. - М.: Высшая школа, 1979. - 216 с.

Методы биохимического исследования растений. / Под ред. Л.И. Ермакова. - М.: Просвещение, 1972.

Наумов Н.А. Методы микобиологических исследований. - М., 1973.

Рубин Б.А., Арциховская Е.В. Биохимия и физиология иммунитета растений. - М., 1977.

Хржановский П.М. Курс батаники. Учебное пособие. - М., 1984.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.