Рефераты. Методы микробиологической диагностики

p align="left">Полуперевиваемые линии клеток представлены диплоидными клетками человека и живот-ных. Культуры ограниченно пригодны к повторному диспергированию и росту (как правило, не более 20-30 пересевов), сохраняя при этом жизнеспособность и не подвергаясь спонтан-ной трансформации.

Перевиваемые линии клеток (гетероплоидные культуры) представлены клетками, подверг-нутыми длительному культивированию и спонтанным трансформациям. Культуры способны к многократному диспергированию и перевиванию. Работа с ними менее трудоёмка по сравне-нию с приготовлениями первичных культур; перевиваемые клетки относительно одинаковы по своей морфологии и стабильны по свойствам.

Культуры органов

Не все виды клеток способны расти в виде монослоя, в некоторых случаях поддержание дифференцированных клеток возможно только в культуре органа. Обычно это суспензия ткани, обладающей специализированной функцией, также обозначаемая как культура переживаю-щей ткани.

Куриные эмбрионы

Куриные эмбрионы (рис. 1-20) -- практически идеальные модели для культивирования не-которых вирусов (например, гриппа и кори). Замкнутая полость эмбриона препятствует проник-новению микроорганизмов извне, а также развитию спонтанных вирусных инфекций. Эмбрионы применяют для первичного выделения вирусов из патологического материала; для пассирова-ния и сохранения их, а также для получения необходимых количеств вируса. Некоторые возбу-дители (например, герпесвирусы) вызывают характерные изменения (по ним можно распозна-вать заболевание). Заражение проводят на хорион-аллантоисную оболочку, в амниотическую или аллантоисную полость либо в желточный мешок.

Заражение на хорион-аллантоисную мембрану. Обычно используют 10-12-суточные эмбрионы. Яйца просматривают в проходящем свете, отмечают локализацию воздушного мешка и выбирают область без сосудов. Осторожно удаляют фрагмент скорлупы, освобож-дают наружную оболочку и отслаивают её осторожным надавливанием. Затем делают от-верстие у края воздушного мешка. При отсосе через это отверстие хорион-аллантоисная оболочка отслаивается от наружной оболочки. На неё наносят исследуемый материал, сво-бодный от бактерий и простейших (пропущенный через бактериальные фильтры и обрабо-танный бактерицидами).

Заражение в амниотическую полость. Обычно используют 7-14-суточные эмбрионы, у которых после отслоения хорион-аллантоисной оболочки (см. выше) расширяют отверстие, захватывают пинцетом амниотическую оболочку и выводят через хорион-аллантоисную оболочку. Через неё в амниотическую полость вводят исследуемый материал.

Заражение в аллантоисную по-лость. 10-суточные эмбрионы зара-жают через отверстия, сделанные в скорлупе и подлежащих оболочках (см. выше).

Заражение в желточный мешок. Используют 3~8-суточные эмбрио-ны, у которых в этом возрасте жел-точный мешок занимает почти всю полость яйца. Заражение проводят через отверстие, сделанное в воз-душном мешке

Наблюдение и учёт результатов. В качестве вируссодержащего материала можно исполь-зовать содержимое желточного мешка, аллантоисную и амниотическую жидкости либо весь эмбрион, нарезанный вместе с окружающими

тканями на кусочки. Для выявления Рис. 1-20.Схематическое изображение

характер-ных поражений на хорион- развивающегося куриного эмбриона.

аллантоисной мембране удаляют скорлупу

и наружную оболочку. Затем мембрану извлекают и помещают в стерильную воду. Характер поражений изучают на тёмном фоне.

Животные модели

При невозможности выделить и идентифицировать вирус стандартными методами in vitro инфекционный материал вводят чувствительным к возбудителю животным, и после развития типичного инфекционного процесса проводят повторное заражение чувствительных клеточных культур. Наиболее часто используют мышей, кроликов и обезьян; для выделения некоторых вирусов (например, вирусов Коксаки) заражают мышат-сосунков. Вследствие дороговизны и сложности содержания лабораторных животных, практически повсеместно их вытеснили кле-точные культуры. Тем не менее, животные модели активно используют для изучения особенно-стей патогенеза и формирования иммунных реакций при вирусных инфекциях.

Идентификация вирусов

Качественное определение

Наличие и биологическую активность вирусов определяют по эффектам, наблюдаемым на животных моделях (повышение температуры тела, появление характерных клинических при-знаков, гибель и т.д.), куриных эмбрионах и на клетках (в культурах). Под воздействием конкретных вирусов возможно изменение морфологии, роста, репродукции клеток либо их разрушение. Факт размножения вирусов в чувствительных клетках in vitro определяют по цитопатическим эффектам (в том числе бляшкообразованию, тельцам включений), феномену гемадсорбции, «цветной реакции».

Цитопатические эффекты оценивают при микроскопии клеточных культур. По степени поражения клеток выделяют вирусы с высокой или умеренной цитопатогенностью. Размноже-ние вирусов в культурах клеток сопровождается нарушениями морфологии клеток монослоя. Некоторые вирусы вызывают характерные цитопатические изменения, что (с учётом клиничес-кой картины заболевания) позволяет быстро поставить предварительный диагноз. Например, размножение парамиксовирусов (вирусы кори, паротита, PC-вирус) сопровождается появлени-ем характерных гигантских многоядерных клеток; аденовирусы вызывают образование скопле-ний больших круглых клеток, а при репродукции герпесвирусов клетки округлой формы диффузно располагаются по всему монослою.

Бляшкообразование. «Бляшками» называют негативные колонии -- участки разрушенных клеток, выглядящие как зоны просветления на монослоях клеток, покрытых слоем агара. В некоторых случаях дозу и цитопатогенность вируса выражают в бляшкообразующих едини-цах (БОЕ).

Тельца включений. Многие вирусы вызывают появление в заражённых клетках характерных образований -- скоплений вирусных белков или частиц, видимых в световой микроскоп. Тельца включений могут располагаться как в цитоплазме (тельца Гварнери при оспе), так и в ядрах клеток (аденовирусы).

Отсутствие цитопатического эффекта. Некоторые вирусы (например, вирус краснухи) не проявляют цитопатического эффекта. Их можно выявлять по интерференции другого вируса, способного вызывать дегенерацию заражённых клеток.

Феномен гемадсорбции. Многие заражённые вирусами клетки приобретают способность сорбировать на своей поверхности различные эритроциты. Феномен гемадсорбции имеет общие механизмы с гемагглютинацией и проявляется на ранних сроках, до проявления цитопатическо-го эффекта, при его отсутствии либо слабой выраженности.

«Цветная реакция». В культуральную среду, используемую для поддержания клеток, вно-сят индикатор. Рост клеток сопровождается накоплением метаболитов, сдвигом рН среды и изменением окраски индикатора. Заражение культур вирусом резко ингибирует клеточный ме-таболизм, и среда сохраняет первоначальный цвет.

Экспресс-диагностика. Для быстрой идентификации вирусной инфекции разработаны мно-гочисленные методы экспресс-диагностики, основанные на обнаружении вирусных Аг. Например, для ранней диагностики ВИЧ-инфекции широко используют ИФА, выявляющий поверхностные Ar вируса.

Количественное определение

Количественное определение вирусов проводят двумя путями -- изучением инфекционности и количественным определением вирусных Аг. Определение титра инфекционности вирусов в значительной степени зависит от метода количественного исследования; у бактериофагов отно-шение инфекционность-частица составляет приблизительно 1 (то есть каждая вирусная час-тица способна вызвать инфекцию), для вирусов животных данное отношение составляет 1:10 (иногда выше из-за вирусингибирующего действия факторов резистентности).

Определение инфекционности вирусов. Наиболее доступная форма количественного определения -- подсчёт числа вирусных «бляшек». Прямые тесты на инфекционность применя-ют для установления инфекционной дозы (ID) или летальной дозы (LD) изучаемого вируса (обычно выражают в lg). ID50 -- разведение, инфицирующее 50% клеток; LD50 -- разведение, убивающее 50% поражённых клеток или животных.

Выявление вирусных Аг и вирусных частиц. Наиболее распространённый метод -- реакция количественной гемагглютинации. Метод основан на способности вирусов сорбиро-ваться на поверхности эритроцитов животных и человека. Количественную электронную мик-роскопию применяют для подсчёта общего числа вирусных (но не инфекционных) частиц в исследуемом обьекте (например, культуральной жидкости).

Морфология вирусов

Изучение морфологии вирусов возможно лишь при помощи электронной микроскопии, одна-ко чаще всего этот метод недоступен из-за отсутствия столь дорогого и сложного прибора. Более того, многие возбудители морфологически сходны, что снижает ценность этого метода. Наиболее распространён метод микроскопии содержимого везикул и тканевых экстрактов, об-работанных красителями (негативное контрастирование), с последующим подсчётом ДНК- или РHK-содержащих вирусов. Электронная микроскопия позволяет быстро обнаружить орто- и парамиксовирусы в отделяемом дыхательных путей, герпесвирусы в жидкости везикул и ротавирусы в фекалиях.

Серологические методы идентификации

При большинстве вирусных инфекций развиваются иммунные реакции, применяемые для диагностики. Клеточные реакции обычно оценивают в тестах цитотоксичности лимфоцитов в отношении инфекционных агентов или заражённых ими клеток-мишеней либо определяют спо-собность лимфоцитов отвечать на различные Аг и митогены. В работе практических лаборато-рий выраженность клеточных реакций определяют редко. Большее распространение нашли ме-тоды идентификации противовирусных AT.

РН основана на подавлении цитопатогенного эффекта после смешивания вируса со специфичными AT. Неизвестный вирус смешивают с известными коммерческими антисыворотками и после соответствующей инкубации вносят в монослой клеток. Отсутствие гибели клеток указывает на несоответствие инфекционного агента и известных AT.

Торможение гемагглютинации. РТГА применяют для идентификации вирусов, способ-ных агглютинировать различные эритроциты. Для этого смешивают культуральную среду, со-держащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при её отсутствии делают заключение о несоответствии вируса антисыворотке.

Торможение цитопатического эффекта интерференцией вирусов. Реакцию тор-можения цитопатического эффекта за счёт интерференции вирусов применяют для идентифи-кации возбудителя, интерферирующего с известным цитопатогенным вирусом в культуре чув-ствительных клеток. Для этого в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неё), инкубируют и заражают вторую культуру; через 1-2 дня в неё вносят известный цитопатогенный вирус (например, любой ЕСНО-вирус). При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим применённым AT.

Прямая иммунофлюоресценция. Среди прочих тестов наибольшее распространение нашла реакция прямой иммунофлюоресценции (наиболее быстрая, чувствительная и воспроизводимая).Например, идентификация ЦМВ по цитопатогенному эффекту требует не менее 2-3 нед, а при использовании меченых моноклональных AT идентификация возможна уже через 24 ч. Имея набор подобных реагентов, их можно вносить в культуры, заражённые вирусом, инкубировать, отмывать не связавшийся реагент и исследовать с помощью люминесцентной микроскопии (по-зволяет выявить наличие флюоресценции заражённых клеток).

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.