Рефераты. Микробиологический анализ школьных помещений

p align="left"> Таблица 2. Санитарно-микробиологические нормативы воздуха в хирургических отделениях

Помещение

Условия работы

Допустимые показатели

Микробное число в 1м3

Содержание

Патогенных стафилококков

Патогенных

стрептококков

Операционные

Предоперационные и перевязочные

Палаты

При малых операциях

При операциях на центральной нервной системе

До начала операции

После

операции

До начала

работы

Летом

Зимой

Не выше 700

Не выше 15-70

Не выше 500

Не выше 1000

Не выше 750

Менее 3500

Менее 5000

Не должны

содержаться

в 250л

То же

Менее 24

Менее 52

Не должны

содержаться

в 250л

То же

Менее16

Менее 36

Питательный сухой агар для культивирования микроорганизмов (ГРМ - агар).

Состав панкреотический гидролизат рыбной муки…24,0

в граммах натрий хлористый…………………………. …..4,0

на 1л воды: агар микробиологический………………..12,0+2,0

Способ приготовления среды:

38,0 г порошка размешать в 1 л дистиллированной воды, кипятить 1-2 минуты до полного расплавления агара, фильтровать через ватно-марлевый фильтр, разлить в стерильные флаконы и стерилизовать автоклавированием при t = 1210С в течение 15 минут. Среду охладить до t = 45-500C, разлить в стерильные чашки Петри слоем 4-5 мм. После застывания среды чашки подсушить при t = 37+10C в течение 40-60 минут.

Рисунок 1 - Школьные помещения, в которых проводился анализ. А - классная комната, Б - коридор, В - столовая, Г - спортзал

Питательная сухая среда для выделения энтеробактерий (Агар - Эндо - ГРМ).

Состав панкреотический гидролизат рыбной муки…...12,0

в граммах экстракт пекарных дрожжей……………………..1,0

на 1л воды: натрий хлористый………………………………...3,4

лактоза…………………………………………….10,0

сульфит натрия…………………………………….0,8

натрий фосфорнокислый 2 - замещенный………0,5

фуксин основной………………………………..…0,2

агар…………………………………………...10,0+2,0

Способ приготовления среды:

36,7 г среды размешать в 1 л дистиллированной воды, кипять 2- 3 минуты до полного расплавления агара, профильтровать через ватно-марлевый фильтр, снова довести до кипения, охладить до t = 46-500С и разлить в стерильные чашки Петри слоем 5-6мм. После застывания среды чашки подсушить при t = 37+10C в течение 40-60 минут.

Наиболее старым методом микробиологического анализа воздуха является седиментационный метод (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательной средой при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5-10 минут. По окончании экспозиции чашки закрывают и помещают в термостат при 370С на 24 ч, а затем при комнатной температуре выдерживают еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Данный метод пригоден для сравнительных оценок чистоты воздуха [6].

2.3 Методика расчета

Учет посева бактерий из воздуха производят путем подсчета выросших колоний бактерий отдельно. Зная площадь чашки Петри, можно определить количество микроорганизмов в 3 воздуха. Для этого: 1) определяется площадь питательной среды в чашке Петри по формуле рr2; 2) вычисляют количество колоний на площади 1 дм2 ; 3) пересчитывают количество бактерий на 3 воздуха [5].

Примерный расчет. В чашке Петри диаметром в 10 см выросло 25 колоний.

1) определяют площадь питательной среды в чашке Петри по формуле 3,14*52 или 3,14*25 = 78,5 см2

2) вычисляют количество колоний на площади 1 дм, равного 100 см2

25колоний - 78,5 см2

х=25*100/78,5=32 колоний

х колоний - 100 мм2

т. е. на площади 1 дм2 имеется 32 колонии.

3) пересчитывают количество бактерий на 3 воздуха, который равен 1000л. Содержащиеся 32 колоний бактерий на площади 1 дм2 соответствуют объему 10л воздуха. Чтобы узнать количество в3 воздуха, составляют пропорцию:

32 - 10

х=32*1000/10=3200

х - 1000

Следовательно, в3 воздуха содержится 3200 бактериальных телец.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В ходе исследований для каждой микробиологической оценки использовалось по три чашки Петри. Колонии микроорганизмов, выросших на среде ГРМ-агар, представлены на рисунках 2-5. Необходимо отметить, что применение среды Эндо показало отсутствие кишечных палочек в изученных школьных помещениях.

На основании подсчета колоний, выросших в чашках Петри, была проведена оценка содержания микроорганизмов, которые содержатся в воздухе различных помещений в разные периоды учебного дня. Полученные результаты представлены в таблицах 3-5.

Рисунок 2 - Микробиологический анализ: А - классного кабинета, Б - школьного коридора, В - школьной столовой, Г - спортзала

3.1 Сравнительный анализ школьных помещений в один период времени

На первом этапе исследования было проведено сравнение данных, полученных в разных помещениях примерно в один период времени - от 4 до 5 перемены. Из таблицы 3 и рисунка 3 хорошо видно, что наименьшее количество микроорганизмов (1571) было выявлено в классном помещении, а наибольшее (16220) - в спортзале.

Таблица 3. Количество микроорганизмов, содержащееся в 1м3 воздуха школьных помещений

Помещение

1-ая чашка

2-ая чашка

3-я чашка

Среднее

Класс

1910

637

2165

1571 +473

Коридор

3949

3439

1371

2920 +788

Столовая

5222

2929

5605

4585+ 836

Спортзал

23439

8407

16814

16220 +4350

Однако необходимо отметить, что выявленные различия между классом и коридором, а также коридором и столовой не достоверны по t-критерию Стьюдента. Также следует добавить, что, исходя из литературных данных (таблица 1), эти помещения можно отнести к числу «чистых». Среди рассмотренных помещений только спортзал может рассматриваться в качестве «относительно грязного». По-видимому это объясняется тем, что занятие физкультурой, подвижные игры приводят к поднятию пыли, следовательно и микроорганизмов, находящихся в ней. Различия в сравниваемых парах помещений - класс-спортзал, коридор-спортзал и столовая-спортзал, являются достоверными с 1% или 5% уровнем значимости.

3.2 Сравнительный анализ одного помещения в разные периоды времени

На втором этапе исследований был проведен сравнительный анализ загрязненеия воздуха в одном и том же помещении, но в разные периоды учебного дня. Объектом для данного исследования был выбран коридор. На таблице 4 и на рисунке 4 представлены данные о содержании микроорганизмов в воздухе в течение учебного дня.

Таблица 4. Количество микроорганизмов, содержащееся в 1м3 воздуха школьного коридора в разные периоды времени

Коридор:

1-ая чашка

2-ая чашка

3-я чашка

среднее

До 1 урока

1146

1371

1371

1296 +75

1 перемена

1783

1529

2166

1826 +185

5 перемена

3949

3949

1371

2920 +788

Из рисунка 4 видно, что содержание микроорганизмов в воздухе постепенно увеличивается в течение учебного дня. В то же время, наблюдаемые различия не являются достоверными по t-критерию Стьюдента. Кроме того, как следует из данных, приведенных в таблице 4 разброс значений может быть значительным. Так, на 5 перемене анализ двух чашек показал, что в 1 м3 воздуха содержится 3949 микроорганизмов, в то время как исходя из данных третьей чашки в воздухе находится 1371 микроорганизм. Таким образом, можно говорить только о тенденции к возрастанию численности микроорганизмов в течение учебного дня.

3.3 Сравнительный анализ одного помещения в разные периоды времени при наличии дополнительных факторов

На третьем этапе был также проведен анализ изменения содержания микроорганизмов в воздухе в одном помещении (класс химии), но при наличии двух дополнительных факторов: 1) проветриваемость помещения, 2) количество людей и интенсивность их передвижения. Полученные данные представлены в таблице 5 и рисунке 5.

В классе в течение всего дня были открыты форточки, что способствовало проветриванию помещения. Однако наблюдается резкое увеличение количества микроорганизмов во время 1 перемены, когда происходила смена различных классов. Таким образом, резкий скачок количества микроорганизмов, по-видимому, объясняется увеличением количества людей в помещении. При этом, проветриваемость помещения не оказывает существенного влияния на содержание микроорганизмов в воздухе в это время.

Однако на 5 перемене люди в классной комнате отсутствовали и это привело к снижению численности микроорганизмов в воздухе. Все это говорит о первостепенном влиянии именно такого фактора, как количество людей и интенсивность передвижения на степень загрязненеия воздуха микроорганизмами. Проветриваемость же помещений возможно оказывает свое влияние на общее количество микроорганизмов, но не на динамику их содержания.

Таблица 5. Количество микроорганизмов, содержащееся в 1м3 воздуха классного помещения в разные периоды времени

Класс:

1-ая чашка

2-ая чашка

3-я чашка

Среднее

До урока

509

637

254

467 +113

1 урок

127

382

509

339 +112

1 перемена

4713

2420

2930

3354 +695

5 перемена

1910

637

2165

1571 +473

6 урок

509

509

891

636 +127

Следует добавить, что наблюдается некоторое уменьшение количества микроорганизмов на уроках по сравнению с переменами. Это также подчеркивает большую значимость интенсивности движения по сравнению с проветриваемостью помещений.

3.4 Сравнительный анализ школьных помещений в течение всего учебного дня

На четвертом этапе был проведен сравнительный анализ классного кабинета и коридора в течение всего учебного дня. Динамика содержания микроорганизмов в классном помещении представлена в таблице 6 и на рисунке 6, а коридора - в таблице 7 и на рисунке 7. Следует отметить, что данный анализ проводился в зимний период времени. По-видимому, это объясняет факт снижения микроорганизмов в соответствующие периоды учебного дня в одних тех же помещениях по сравнению с осенними исследованиями (см. таблицы 4 и 5). Выявлено, что тенденция снижения численности микроорганизмов во время уроков по сравнению с переменами, выявленное в осенний период (таблица 4), была подтверждена и в зимний период (таблица 6). По-видимому, динамика содержания микроорганизмов в воздухе связана с интенсивностью передвижения людей. Единственным исключением является 1 урок, что скорее всего объясняется наличием опоздавших учеников, в результате чего во время проведения эксперимента интенсивность передвижения людей была достаточно велика.

Что касается гипотезы о постепенном увеличении микроорганизмов к концу учебного дня, то в отношении классной комнаты сделать какие-либо окончательные выводы невозможно. Два пика увеличения - на 4 перемене и после уроков могут быть вызваны посторонними факторами, которые не учитывались первоначально при постановке экспериментов. Сами исследователи на 4 уроке находились в спортзале, где, как было показано ранее (таблица 3), наблюдается наибольшая загрязненность воздуха. Таким образом, непосредственно исследователи могли оказаться причиной наблюдаемого на 4 перемене резкого возрастания численности микроорганизмов. После же уроков, когда весь класс начал собираться домой, интенсивность движения резко возрасла по сравнению с обычными переменами. Вследствие этого, повышенная численность микроорганизмов после уроков может быть объяснена как увеличением загрязнения воздуха к концу учебного дня, так и интенсивностью движения. Относительно исследований в коридоре необходимо отметить, что здесь тенденция к увеличению количества микроорганизмов к концу учебного дня, при примерно одинаковой численности людей и интенсивности их передвижения, прослеживается более четко. От 1 перемены к 5 перемене численность микроорганизмов в воздухе постепенно увеличивается, аналогично тому как это наблюдалось и в осенний период (таблицы 4 и 7, рисунки 4 и 7).

Таблица 6. Количество микроорганизмов, содержащееся в 1м3 воздуха классного помещения

класс

1-ая чашка

2-ая чашка

3-я чашка

Среднее

До урока

127

127

254

170 + 42,5

1 урок

382

254

764

467 +153

1 перемена

254

891

127

424 +236,3

2 урок

254

254

509

340+84,9

2 перемена

509

509

893

637+127,8

3 урок

254

382

382

340+42,4

3 перемена

127

382

893

467 +225,1

4 урок

254

127

127

170 +42,5

4 перемена

5350

3694

1273

3440+1183,6

5 урок

127

254

509

297+112,4

5 перемена

893

127

764

595+236,1

6 урок

254

891

127

424+236,3

После уроков

891

1146

1401

1146+147,2

Таблица 7. Количество микроорганизмов, содержащееся в 1м3 воздуха коридора

коридор

1-ая чашка

2-ая чашка

3-я чашка

Среднее

До урока

764

0

0

255+254,7

1 перемена

127

637

1019

722+297,2

2 перемена

893

893

382

723+170,3

3 перемена

509

637

1655

934+362,7

4 перемена

3694

1528

2038

2420+653,7

5 перемена

1146

1019

1146

1104+42,5

После уроков

509

509

127

382+127,3

Четвертую перемену можно не учитывать, поскольку здесь, по-видимому, пик численности объясняется теми же причинами, что и в классе на 4 перемене. Главным же фактором уменьшения загрязнения воздуха после окончания учебного дня (6 перемена) следует рассматривать уменьшение количества людей.

ЗАКЛЮЧЕНИЕ

1) Наибольшее количество микроорганизмов выявлено в воздухе спортзала, а наименьшее - классной комнаты.

2) Наблюдается тенденция увеличения количества микроорганизмов в воздухе коридора в течение учебного дня.

3) В воздухе классного помещения содержание микроорганизмов увеличивается во время перемен и уменьшается во время уроков.

4) Количество микроорганизмов в воздухе в первую очередь зависит от численности людей в помещении и интенсивности их передвижения.

5) Содержание микроорганизмов в воздухе одних и тех же помещений отличается в разные времена года.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Федоров М.В. Микробиология. - М.: Гос. Изд-во сельхозлитературы,1960.- 350 с.

2 Бакулина Н.А., Краева Э.Л. Микробиология.- М.: Медицина, 1980.- 338 с.

3 Павлович С.А., Пяткин К.Д. Медицинская микробиология. - Минск: Высшая школа, 1993. - 200 с.

4 Лабинская А.С. Микробиология с техникой микробиологических методов исследования.- М.: Медицина, 1968.- 392 с.

5 Черемисинов Н.А., Боева Л.И., Семихатова О.А. Практикум по микробиологии.- М.: Высшая школа, 1967.- 168 с.

6 Шлегель Г.Х. Общая микробиология.- М.: Мир, 1987.- 566 с.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.