Рефераты. Молекулярные механизмы сплайсинга

p align="left">Первое преобразование -- это, возможно, смещение U1 с 5'-конца сплайсингового участка и возникновение там связи с U6. Известно, что U1 слабо связан с действующей сплайсосомой, а также является ингибитором для образования связи между U6 и 5'-концом (показано на примере короткой цепочки РНК, содержащей 5'-экзон и 5'-конец сплайсингового участка).

Связывание U2 с ПТВ -- еще один пример взаимодействия между РНК, возникающего на месте взаимодействия между РНК и белками. При связывании U2 со сплайсосомой, белок Е-комплекса SF1, связывающийся с участком ветвления, вытесняется, так как наличие U2 исключает его связывание с этим участком. Внутри самого U2 также происходят некоторые взаимоисключающие переконфигурации. Например, в его активной форме, возникает шпилька IIа, а неактивной же форме доминирует взаимодействие между шпилькой и последующим участком цепи.

Неясно, за счет чего U4 отделяется от U6. Считается, что в сборке сплайсосомы участвует несколько хеликаз, которые могут раскручивать РНК в связке U4-U6 и таким образом упрощать формирование связи U2-U6.

Связи между шпильками I и II в мяРНП U4 и U6 разрываются, и освободившийся участок шпильки II U6 сворачивается сам на себя с образованием внутримолекулярной шпильки. После этого потребность в U4 отпадает. Освободившийся участок шпильки I U6 связывается с мяРНК U2 с образованием U2-U6-спирали I. Структура спирали I, однако, взаимоисключающа с 3'-половиной участка внутренней 5'-шпильки мяРНК U2.

Рис. 3. Схема расположения кодирующих белок (экзоны, синий цвет) и некодирующих белок (интроны (серый) цвет 3' и 5' нетранслируемые области (зелёный) в гене человека CDK4

СПЛАЙСИНГ БЕЛКОВ

Введение

В настоящее время кардинально меняются многие взгляды на основы жизни. Молекулярная биология -- не исключение. Например, еще лет 10-15 назад термин «катализ» связывали исключительно с белками, а «сплайсинг» -- с нуклеиновыми кислотами (в основном РНК). Однако постепенно стало понятно, что каждый класс макромолекул обладает намного большей функциональностью. Например, в 1982-1983 гг. было показано, что некоторые разновидности РНК, подобно белкам, обладают каталитической активностью (они получили название рибозимов). В последние годы было открыто, что некоторые малые РНК способны регулировать и даже блокировать экспрессию генов. А в 1990 г. было обнаружено явление белкового автосплайсинга -- процесса, аналогичного сплайсингу РНК. С этого момента стало ясно, что канонические законы молекулярной биологии, недавно еще казавшиеся абсолютными и незыблемыми, отражают только наиболее общие принципы живого, и должны дополняться, исправляться, а иногда и заново переписываться.

Splice (англ. «сшивать, соединять») -- соединение двух отрезков верёвки или каната путём сплетения их концов (морской термин).

Сплайсинг -- это процесс дозревания молекул, в результате которого из предшественника удаляется внутренняя часть с последующим лигированием (т. е. образованием ковалентной связи) фланкирующих последовательностей (т. е. тех частей молекулы, что примыкали к концам удалённой внутренней части).

Сплайсинг белков, или белковый сплайсинг - это внутримолекулярный автокаталитический процесс, происходящий в некоторых белках, при котором внутренняя часть белка (под названием интеин) выщепляется из белка-предшественника с последующим лигированием оставшихся частей. На месте сплайсинга в белке-предшественнике находится цистеин или серин, то есть аминокислота с нуклеофильной боковой группой. Известные в настоящее время реакции сплайсинга не требуют экзогенных кофакторов и источников энергии (например, АТФ или ГТФ). Словом «сплайсинг» обозначают обычно сплайсинг пре-мРНК.

Сплайсинг белков был открыт двумя группами исследователей (Анраку и Стивенса) в 1990 г. Обе группы открыли белок VMA1 дрожжей Saccharomyces cerevisiae, предшественник вакуолярной H+-АТФазы. Аминокислотная последовательность N- и С-концов VMA1 на 70% соответствует последовательности вакуолярной H+-АТФазы других организмов, тогда как центральная последовательность на 30% совпадает с дрожжевой нуклеазой НО.

Белковый сплайсинг был открыт при исследовании дрожжевого гена VMA1, кодирующего субъединицу Vma1 вакуолярной ATФазы. Оказалось, что в результате дозревания центральная часть белка удаляется, а фланкирующие ее последовательности лигируются («сшиваются» между собой). При этом для концевых последовательностей дрожжевого гена VMA1 характерна высокая степень гомологии с аналогичными последовательностями других микроорганизмов, тогда как в центральной части она нарушалась. Так стало ясно, что и у белков в некоторых случаях может происходить процесс, аналогичный сплайсингу пре-мРНК. Также как и в автосплайсинге РНК, для сплайсинга белков не требуются ни ферменты, ни кофакторы. По аналогии центральную часть белка (которая самовырезается) назвали интеином (от internal protein), фланкирующие последовательности -- N- и С-экстеинами- и С-экстеинами (external protein), а весь процесс -- белковым сплайсингом (рис. 1).

Рис. 1. Схематическое строение основных типов интеинов.

А. Классический интеин, содержащий эндонуклеазный домен, Б. Мини-интеин. Консервативные аминокислотные остатки, необходимые для сплайсинга, обозначены однобуквенными аббревиатурами (один остаток с N-конца интеина и триада остатков -- на стыке с C-конца и C-экстеина).

Структура интеинов

Условно интеины можно поделить на две большие группы -- классические интеины и мини-интеины. Классический интеин состоит из двух доменов -- сплайсингового домена, который как раз и катализирует вырезание интеина из белка-хозяина и последующее его сшивание (так сказать, «заметает следы»), и центрального эндонуклеазного домена (который может разрезать ДНК по определенным сайтам), обеспечивающего так называемый «хоуминг» интеина. Хоуминг -- настолько интересный процесс, что подробнее мы его рассмотрим ниже. В двух словах скажем только, что он (хоуминг) отвечает за распространение гена интеина (что даже больше похоже на размножение, если б этот термин можно было применить к отдельному белку). Мини-интеины не имеют центрального эндонуклеазного домена и хоумингом не занимаются.

Эндонуклеазный и сплайсинговый регионы образуют в молекуле интеина два пространственно разделенных домена. Сплайсинговый домен образуется N- и С-концевыми частями интеина. Он имеет характерную подковообразную форму. Концы интеина жёстко зафиксированы друг напротив друга в пространстве, и по сути формируют активный центр (АЦ), очень похожий на АЦ трипсина или любой другой сериновой протеазы. Оба конца интеина, по которым происходит разрезание, находятся около АЦ (рис. 2).

Рис. 2. Пространственная структура интеина (мини-интеин Mxe GyrA).

Сближенные концы интеина обозначены квадратом. Изображение получено из PDB-структуры 1AM2.

Современные представления о механизме белкового сплайсинга

Многими исследователями было показано, что белковый сплайсинг является аутокаталитическим процессом и для своего осуществления не требует присутствия ферментов или кофакторов. Однако определить точный механизм сплайсинга белков долгое время не удавалось -- процесс происходит очень быстро, и обычными методами обнаружить промежуточные соединения не представлялось возможным. Главная проблема заключалась в том, что интеин в составе белка нельзя было даже выделить -- сплайсинг проходил сразу после синтеза белка, и пока клетки собирались и лизировались -- следов уже не оставалось. Решить эту задачу удалось группе Ф. Перлер (Francine Perler) довольно очевидным (как это теперь представляется) способом. Они изменяли ряд консервативных аминокислотных остатков в интеинах методом направленного мутагенеза. Как только мутации касались активного центра интеина -- белковый сплайсинг блокировался на разных этапах, и в среде накапливались промежуточные продукты реакции. Например, изменение С-конца интеина вызывало накопление «разветвлённых» белков, у которых было... два N-конца. Исследование этих необычных белков и позволило предложить механизм белкового сплайсинга (см. рис. 3).

Рис. 3. Механизм белкового сплайсинга.

Событием, запускающим белковый сплайсинг, является автокаталитический N-O или N-S-сдвиг (первый аминокислотный остаток на N-конце интеина Ser или Cys, соответственно) на N-концевом сайте сплайсинга (шаг 1). В результате образуется высокореакционная эфирная или тиоэфирная связь.

С точки зрения химии, N-O/N-S-сдвиг не является энергетически выгодным процессом, поскольку в результате реакции происходит разрыв амидной (пептидной) связи и образуется высокоэнергетическая эфирная/тиоэфирная связь. Поэтому этот процесс должен катализироваться. Действительно, протекание реакции разрыва пептидной связи на N-конце облегчается как минимум двумя факторами. Во-первых, процесс катализируется самим сплайсинговым доменом интеина. Во-вторых, на эффективность N-концевого расщепления определенное влияние оказывают экстеины. Показано, что у некоторых интеинов пептидная связь, связывающая N-экстеин и первую аминокислоту интеина, находится в редкой и не характерной для белков цис-конформации. Поскольку такая связь энергетически невыгодна, ее наличие провоцирует протекание N-О или N-S сдвига, т. е. инициирует сплайсинг.

На втором этапе белкового сплайсинга происходит нуклеофильная атака образовавшейся эфирной связи OH- или SH-группой первого остатка С-экстеина. В результате происходит реакция трансэтерификации, т. е. перенос Н-концевого экстеина на боковую группу первого остатка С-экстеина (шаг 2). В результате образуется разветвленное промежуточное соединение (те самые белки с двумя N-концами, с помощью изучения которых был и предложен данный механизм сплайсинга). Такая перестановка приводит к смещению зарядов, что в свою очередь, индуцирует циклизацию боковой цепи Asn на С-конце интеина (шаг 3).

Циклизация боковой группы Asn приводит к разрыву пептидной связи между интеином и С-экстеином -- разветвленная структура распадается на свободный интеин и лигированные экстеины, связанные друг с другом эфирной связью (шаг 3). Последний шаг сплайсинга белка происходит спонтанно (шаги 4а и 4б).

Согласно принятой на сегодня теории, белковый сплайсинг состоит из серии последовательных перестановок. Детальными исследованиями этих перестановок занимается российский ученый Старокадомский. Но самое удивительное, что помимо цис-сплайсинга (т. е. автокаталитического удаления интеина из белка-предшественника), у многих организмов обнаружено явление транс-сплайсинга. На пальцах это можно объяснить так: у двух белков на соответствующих концах есть по половинке интеина (назовем их интеин-подобные домены, ИПД), которые, соединяясь по типу «ключ-замок», образуют вполне функциональный интеин. А этот образованный интеин вырезает сам себя, сшивая два белка в единое целое. То есть, в результате транс-сплайсинга происходит сшивание двух белков, кодируемых двумя различными генами (рис. 4). И это не лабораторная экзотика: по такому механизму, например, происходит образование белка DnaE (одна из субъединиц ДНК-полимеразы) у Synechocystis sp.

Рис. 4. Механизм транс-сплайсинга.

Рис. 5. Предполагаемый механизм сплайсинга белков

а, б - альтернативные механизмы инициации сплайсинга, N, C - N- и C- концевые экстеины белков-предшественников

Эндонуклеазная активность интеинов

Следующей удивительной особенностью интеинов (правда, не всех) является их эндонуклеазная активность. Интеин обеспечивает (с определенными ограничениями) распространение своего гена в геноме клетки. Такой процесс, как мы уже говорили, и называется хоумингом интеинов. Другими словами, интеин-белок может амплифицировать (множить) количество своих генов в клетке. Также за счет этого свойства он может обеспечивать передачу интеинового гена другим особям данного вида или передавать другим видам (т. н. горизонтальный и вертикальный перенос соответственно). Причем эволюционный анализ распространения разных интеинов (а их открыто больше 1000, причем и у прокариот, и у низших эукариот) свидетельствует, что интеины распространяются довольно активно, и притом, оказавшись в разных видах, могут мутировать и менять последовательность. В общем, интеины в данном случае ведут себя подобно транспозонам или даже примитивным вирусам (если такое в принципе можно сказать про белки). Хотя... ряд вирусов также несет в себе интеины. Например открытый недавно гигантский Мими-вирус имеет интеин (APMV Pol) в гене ДНК-полимеразы.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.