Рефераты. Организм и внешняя среда

p align="left">Разрыв нековалентных связей приводит к нарушению высших белковых структур, называемому денатурацией белков. При этом белки утрачивают ряд своих функциональных свойств, становятся более доступными действию расщепляющих их ферментов. Денатурация в зависимости от степени ее и условий может быть и обратимой, и необратимой.

4. Нуклеиновые кислоты и синтез белков

Чем же обусловлена строго определенная последовательность аминокислот в белках? Как показали многочисленные исследования, информация об этом закодирована в генном аппарате клеток (геноме), т. е. в ДНК хроматина клеточного ядра. Для каждого синтезируемого в организме белка имеется своя ДНК (или участок цепи ДНК), и синтезированы могут быть только те белки, структура которых закодирована в геноме. ДНК --- сложные макромолекулы (с MM от 10000 до миллионов атомных единиц), представляющие собой цепи соединенных друг с другом нуклеотидов (от 2000 до IO8 ед.) и образующие двойную спираль.

Каждый нуклеотид состоит из азотистого (пуринового или пиримидинового) основания, пятиуглеродного сахара дезоксирибозы и остатка фосфорной кислоты. Из азотистых оснований в состав ДНК входят аденин, гуанин, цитозин и тимин,2 причем двойная цепь ДНК построена так, что против аденина одной цепи находится тимин другой, а против гуанина располагается цитозин. Между этими парами (так называемыми комплементарными) и образуются связи между двумя цепями ДНК. Каждой входящей в состав того или иного белка аминокислоте соответствует тройка (триплет, или кодон) последовательно соединенных оснований; порядок же аминокислот в белке определяется соответствующим расположением триплетов.

Синтез белка начинается с образования иРНК. РНК отличаются от ДНК тем, что в них вместо тимина присутствует азотистое основание -- урацил, вместо дезоксирибозы -- рибоза, а также тем, что они одноцепочечные. Синтезируется иРНК в клеточном ядое по образцу соответственной ДНК, как бы считывая часть содержащейся в ней информации, копируя последовательность оснований в ДНК, определяющую структуру синтезируемого белка. Это процесс транскрипции, который можно сравнить с раскроем ткани по выкройке. Затем иРНК покидает ядро и передает полученную информацию в место синтеза -- рибосомы, построенные из особой рРНК, т. е. происходит процесс трансляции. При помощи иРНК рибосомы объединяются в комплексы -- полирибосомы. Одновременно активируются необходимые аминокислоты и при затрате энергии АТФ соединяются с третьим видом РНК -- тРНК, т.е. совершается процесс рекогниции, или узнавания. Активированные аминокислоты транспортируются к рибосомам. Предполагается, что рибосомы движутся вдоль молекулы иРНК и как бы считывают принесенную ею информацию, по мере продвижения синтезируя полипептидную цепь. При этом иРНК расщепляется -- и остатки ее используются для синтеза новых иРНК.

Белки в организме синтезируются практически все время, но далеко не с полным использованием потенциальных возможностей. Некоторые участки генома могут быть на то или иное время репрессированы, т. е. выключены присоединением к ДНК различных веществ (в частности, щелочных белков гистонов). Для того чтобы данный участок опять включился в работу, необходимо отщепление этих веществ, т. е. дерепрессия. Кроме того, для начала синтеза белка должна произойти индукция его, которая также осуществляется присоединением к ДНК различных веществ. При этом дерепрессорами и индукторами могут быть самые различные вещества: гормоны, продукты обмена веществ и др. Природа их до конца еще не изучена.

Состав генома строго стабилен и практически не изменяется под влиянием внешних и внутренних воздействий. Тем не менее в ряде случаев возможно и изменение состава ДНК, замена одного основания другим. Такое явление называют мутацией. В этом случае закодированный на данном участке ДНК белок уже не может синтезироваться с прежней последовательностью аминокислот. Он или совсем перестает образовываться, или создается с измененной структурой. При этом он или теряет свои функциональные свойства, или приобретает новые. Мутации могут наносить вред организму, иногда они приводят его даже к гибели (так называемые летальные мутации). Но они могут и совпадать с интересами организма, сообщая ему новые свойства, способствующие лучшему приспособлению его к условиям среды. В настоящее время мутации осуществляются и искусственно, что открывает широкие перспективы для преобразования живых организмов.

5. Взаимоотношения организма со средой

Ни один живой организм нельзя представить вне окружающей среды и вне взаимодействия с нею. Из среды организм получает питательные вещества и кислород, в нее отдает конечные продукты обмена веществ. Среда воздействует на него рядом своих факторов: лучистой энергией (световой, ультрафиолетовой, радиоактивной), электромагнитными полями, атмосферным и гидростатическим (для ведущих водный образ жизни) давлением, температурой, различными химическими веществами. Она же неизбежно предполагает взаимодействие с другими живыми организмами.

От окружающей среды организм непрерывно получает информацию, на которую реагирует в виде ответных действий: движения, речи (у животных -- издания тех или иных звуков), мимики, поедания пищи и т. п. Таким образом, живой организм непрерывно пропускает через себя не только вещества и энергию, но и поток информации.

Воспринимается информация специальными рецеп-торными аппаратами -- органами чувств, затем передается центральной нервной системе, где происходит «узнавание» сигнала и формирование ответной реакции. Информация проходит по каналам связи либо в виде электрических импульсов по нервным волокнам в ту или другую сторону (нервная связь), либо с помощью химических веществ по кровяному руслу (гуморальная связь). При этом нервная связь четко направлена на определенный участок (центр) нервной системы или орган, а гуморальная связь более генерализованная, т. е. направлена не на одну мишень, а сразу на несколько. Воспринимающая возможность различных рецепторов и пропускная способность каналов связи неодинаковы, поэтому поток информации, получаемый рецептором, передаваемый от него к центру и сохраняющийся в памяти, тоже различен.

Количество информации принято измерять в двоичных знаках -- битах. У человека поток информации через зрительный рецептор равен 108-109 бит/с. Нервные пути пропускают 2 · 106 бит/с. До сознания доходит около 50 бит/с, а в памяти прочно задерживается только 1 бит/с. Таким образом, за 80 лет жизни память удерживает информацию порядка 109 бит. Следовательно, мозгом оценивается не вся, а наиболее важная информация. На пути к нему все несущественное устраняется, отфильтровывается.

Получаемая от среды информация определяет работу функциональных систем организма и поведение человека или животного, регулируя их: усиливая или ослабляя.

Для управления поведением человека и активностью его функциональных систем (т. е. выходной информацией, идущей из мозга) достаточно около 107 бит/с при подключении программ, содержащихся в памяти.

Жизнедеятельность организма регулируется прежде всего на субклеточном и молекулярном уровнях. Это химическая авторегуляция реакций обмена веществ. Она решает местные задачи и является основой всех видов регуляции. Осуществляется она путем изменения концентраций метаболитов, повышения или снижения активности и количественного содержания ферментов, т. е. усиления или угнетения их синтеза, структурных изменений их и других функциональных белков. Но регуляция происходит и на более высоких уровнях: клетки в целом, ткани, органа, функциональной системы, организма. Чем на более высокий уровень передаются управляющие выходные сигналы, тем более обобщенный характер они носят. У человека и животных высшим центром, управляющим вегетативными функциями (кровообращением, дыханием, движением, выделением гормонов и т.п.), является гипоталамус, расположенный в нижней части промежуточного мозга, имеющий связи с системой желез внутренней секреции, другими частями мозга и центром сознания -- его корой. Поступающие сигналы могут осознаваться или не осознаваться. Управляющие ответы на неосознанные сигналы среды могут осуществляться гипоталамусом и без участия высшего отдела головного мозга -- его коры.

В обычных, привычных для организма условиях среды он находится в уравновешенном с ней состоянии. Он сохраняет постоянство как уровня активности функциональных систем, так и состава своей внутренней среды. Но условия среды могут изменяться в неблагоприятную для организма сторону. Нередко эти изменения происходят очень быстро, а порой несут тревожную информацию. Но организм далеко не всегда может сразу настроиться так, чтобы без существенного вреда перенести новые условия. Так, оказавшись на высоте, где снижено парциальное давление кислорода и углекислоты, под влиянием получаемой информации организм перестраивает свою функциональную активность на изменившиеся уровни: возрастают частота и минутный объем дыхания, частота сердечных сокращений, увеличивается объем циркулирующей крови, но степень насыщения артериальной крови кислородом все равно снижается.

Влияние пониженного барометрического давления на некоторые функции организма человека

Давление, кПа

Высота над уровнем моря,

M

Парциальное давление в альвеолярном воздухе, кПа

Частота в 1 мин

Минутный объем дыхания, л/мин

Объем циркулирующей крови, мл/кг

Насыщение артериальной крови кислородом,%

O2

CO2

дыхания

сердечных сокращений

99.1

0

13.3

5.0

12

70

8.8

38

98

64.2

3658

6.3

4.9

14

103

9.1

60

85

54.8

4877

5.5

4.1

12

103

9.5

70

80

50.4

5486

5.0

3.4

12

108

11.1

70

77

46.4

6009

4.5

3.3

13

107

13.0

70

76

42.7

6705

4.0

3.2

15

124

15.0

70

64

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.