Традиционные методы селекции, основанные, главным образом, на половой гибридизации и отборе, позволяют получать новые генотипы растений. Они обеспечивают получение огромного числа сортов и гибридов сельскохозяйственных культур, в том числе шедевров селекции. Выдающиеся селекционеры России (Лукьяненко, Пустовойт, Ремесло, Гаркавый, Кириченко, Калиненко и др.) внесли решающий вклад в эти достижения. Классические методы селекции и в дальнейшем будут составлять основу получения новых сортов. Генно-инженерные манипуляции позволяют решать ряд важных задач по повышению устойчивости новых форм, линий, сортов и гибридов сельскохозяйственных растений к патогенам и сокращению продолжительности выведения новых сортов.
Технология рекомбинантных ДНК позволяет выделять гены как прокариотического, так и эукариотического происжождения, переносит этот ген (или несколько генов) в хромосомы реципиентного растения обеспечивать его экспрессию. Применение этой технологии делает поиск более целенаправленным и значительно расширяет возможности манипулирования генетическим аппаратом.
Важным преимуществом растений по сравнению с животными является возможность получения целого растения из одной клетки, основанная на свойстве тотипотентности. Результаты генетической инженерии растений во многом зависят от разработки методов культуры тканей, особенно методик регенерации различных растений.
Технология генетической инженерии состоит из следующих основных этапов получения трансгенных растений: 1) выбор гена и его клонирование; 2) подбор генотипа растения -реципиента; 3) введение гена и его экспрессия в геноме растения-реципиента; 4)регенерация трансформированных клеток и отбор трансгенных растений.
4. Генетическая трансформация растений. Трансформация растений с помощью агробактерий
Одной из основных проблем при получении трансгенных растений был способ введения чужеродных генов в хромосомы растений, т.е. трансформация растительных клеток. Значительный прорыв был сделан при открытии возможности использования природной системы трансформации растений Тi-плазмидами почвенных агробактерий.
Ранее было известно, что некоторые виды почвенных бактерий (Agrobacteria) могут заражать двудольные растения и вызывать при этом образование специфических опухолей-корончатых галлов. Опухоли состоят из недифференцированных клеток, интенсивно делящихся и растущих в месте заражения. При культивировании in vitro клетки опухоли могут расти в отсутствие гормонов, необходимых для роста нормальных растительных клеток. Если после заражения все агробактерии инактивировать добавлением антибиотика, то клетки корончатых галлов сохраняют способность к неконтролируемому делению. Итак, присутствие агробактерий необходимо только для индицирования образования опухоли. Опухолевые клетки начинают синтезировать необычные для растения аминокислоты-опины (производные аргинина), которые используются агробактериями в качестве источника азота и углерода. Таким образом, при заражении растения агробактерий происходит перестройка метаболизма трансформированных растительных клеток, и они начинают синтезировать соединения, необходимые только для бактерий.
Тi -плазмиды представляют собой кольцевые молекулы ДНК длиной ? 200 т.н.п. В бактериальных клетках они способны реплицироваться автономно. Тi -плазмиды могут быть разделены на четыре группы по типу синтезируемых ими опинов. Чаще всего встречаются тi -плазмиды , кодирующие аминокислоты нопалин или октопин. Причем агробактериальная клетка может содержать только один тип плазмиды: либо октопиновую, либо нопалиновую.
Генетические исследования показали, что Тi- плазмиды имеют сходное строение и содержат последовательности, которые можно поделить на две группы: 1). Необходимые для метаболизма самой агробактерии (гены катаболизма опинов, точка начала репликации плазмиды и т.д ) 2). Необходимые для трансформации растительной клетки. При этом следует особо отметить, что гены первой группы имеют прокариотический тип промотора и могут функционировать только в бактериальной клетке, а второй группы могут работать в растительной клетке. Ко второй группе относятся гены, ответственные за индукцию опухоли и синтез опинов.
Трансформация растения в результате агробактериального заражения происходит следующим образом. Было показано, что агробактерия не входит в растительную клетку, не входит в нее и Тi-плазмида, но часть Тi-плазмиды переносятся в ядро растительной клетки и может встраиваться в растительный геном. Этот фрагмент Тi- плазмиды был назван Т-ДНК (от англ. Transforming DNA- трансформирующая ДНК). На концах Т-ДНК находятся прямые повторы (25н.п), которые необходимы для вырезания ее из состава плазмиды и интеграции в геном растений. Область Т-ДНК несет семь генов: ген, кодирующий синтез одного из опинов, а также шесть генов, кодирующих признаки опухолеобразования, причем два из них кодируют синтез ауксина, а один- синтез цитокинина. В результате экспрессии этих генов в трансформированных клетках меняется гормональный статус, что приводит к их дифференцировке и опухолеобразованию.
Процесс трансформации растения начинается с того, что агробактерии прикрепляется к растительной клетке в области поражения последней. При поранении растительная клетка выделяет во внешнюю среду специфическое фенольное соединение -ацетосиренгон. Итак, методы в то или ином сочетании позволяют получить многие гены, продукты которых- белки- известны и могут быть выделены хотя бы в малом количестве. Эти гены в дальнейшем могут стать объектом генно- инженерных манипуляций, задача которых получить их экспрессию в новом генетическом окружении.
5. Источники генов для улучшения растений
Генетический код един для всех живых существ. Круг источников генов, которые могут быть использованы для улучшения свойств культурных растений, не органичен миром растений. Гены, выделенные из различных царств, семейств и отрядов живых организмов могут работать в представителях любых других царств, семейств и отрядов.
Например, ген белка GFP, выделенный из морской медузы и светящийся в ультрафиолете, успешно работает в трансгенных растениях, помогая отслеживать процесс трансформации и селекции. Гены устойчивости к антибиотикам и гербицидам, выделенные из микроорганизмов, служат маркерами трансформации в растениях.
Существенно удешевили получение урожая гены устойчивости к гербицидам и насекомым. Известно, что для борьбы с сорными растениями, конкурирующими с культурными, требуются значительные средства. Если иметь культуры, устойчивые к гербицидам, последними можно обрабатывать посевы, и уничтожать сорняки без вреда для культурных растений.
Ген bar, выделенный из бактерии, определяющий устойчивость к гербициду «Баста», был введен и апробирован на ряде важнейших культур, в том числе на злаках и сахарной свекле.
В течение нескольких десятилетий для борьбы с насекомыми использовалась культура бактерий Bacillus thuringiensis (Bt). После обработки этой культурой растения не подвергались атакам насекомым. Оказалось, что действенным началом бактерии являются токсичные для насекомых белки, препятствующие всасыванию пищи.
В таблице 1 представлены данные об источниках генов устойчивости к насекомым-вредителям. Трансгенный картофель с генами Bt показал надежно наследуемую устойчивость к колорадскому жуку и получил широкое распространение в странах, страдающих от этого насекомого. С 1997 года во Франции проводятся испытания трансгенной Bt-кукурузы, устойчивой к стеблевому мотыльку.
Таблица 1. Источники генов токсинов из Bt, защищающие растения от насекомых-вредителей.
Разновидности Bt.
Вредители, чувствительные к токсину
Var.tenebrionis u san diego
Колорадский жук, личинки вязового листоеда
Var. kurstaki
Гусеницы капустницы, мешочницы, озимой совки, капустной моли, и др. чешукрылых, личинки европейского кукурузного сверлильщика
Var. ismelensis
Личинки и имаго многих двукрылых
Var. aizavai
Личинки воскового мотылька (вредитель в пчеловодстве), капустного мотылька и др.
Полевые испытания трансгенного картофеля, созданного в лаборатории генетической инженерии растений Центра «Биоинженерия» РАН, показали сохранность признака устойчивости к колорадскому жуку в течение не менее трех вегетативных поколений.
6. Безопасность генетически модифицированных растений
Создание ГМР - высоко технологический процесс, основанный на фундаментальных научных знаниях, требующий высококвалифицированных кадров и мощной современной инструментальной базы. Трансгенное растение создается в научных лабораториях, проходит стадию испытаний в теплицах и в полевых условиях, затем государственные сортоиспытания, регистрацию и, наконец, выходит на рынок: для выращивания в окружающей среде; употребления в пищу непосредственно или в переработанном виде; в качестве кормов для животных, или как источник лекарств-«съедобных» вакцин.
Стратегия биобезопасности основывается на научном исследовании особенностей ГМР, опыте обращения с ними, а также информации о его предполагаемом использовании и окружающей среде, в которую ГМР будет интродуцировано. Совместными многолетними усилиями международных организаций (ЮНЕП), экспертов из разных стран, в т.ч. России, были разработаны базовые понятия и процедуры:
«Опасность» - потенциальная возможность ГМР причинить вред здоровью людей или окружающей среде.
«Риск»- вероятность реализации опасности, если она определена, при высвобождении ГМР в потенциальную принимающую среду. Очень важно определить, в чем фактически состоят риски. При этом учитываются два особых фактора: последствие конкретного события и вероятность наступления события.
«Оценка рисков»- меры по оценке того, какой вред может причинен, как он может проявиться и какими могут быть масштабы предполагаемого ущерба. Оценка рисков должна проводится строго на научной основе, при этом каждое новое ГМР рассматривается индивидуально, поэтапно и в сравнении с исходным не модифицированным растением. Международными и российскими правилами требуется применение «принципа предосторожности» в тех случаях, когда полная информация отсутствует.
Как обеспечивается биобезопасность в России? Началом включения России в мировую систему биобезопасности можно считать ратификацию страной «Конвенции о биобезопасности» в 1995г. С этого момента началось формирование национальной системы биобезопасности (НСБ) как части системы национальной безопасности страны, при этом учитывались международные рекомендации.
Страницы: 1, 2