Рефераты. Проблема сохранения биологического разнообразия

p align="left">Составляющие теплового баланса с высотой меняются одинаково. Затраты тепла на испарение по всему профилю хребта изменяются мало, чего нельзя сказать о затратах тепла на нагревание. Годовые величины последних с высотой быстро уменьшаются. В данном случае показателен коэффициент отношения затрат тепла на испарение к затратам тепла на нагревание (LE/P). В долине Теберды величины LE и Р почти одинаковы, и коэффициент равняется 1,27. В пределах лугового пояса его величины возрастают до 2,0--2,13.

Уменьшение затрат тепла на нагревание с высотой сказывается на температурном режиме воздуха и характере испаряемости. В поясе луговых ассоциаций средние годовые температуры уже ниже нуля. Величины испаряемости не превышают 300мм, поэтому коэффициент увлажнения растет с 1,3 в долине Теберды до 4,8--5,8 в поясе луговых ассоциаций. Подобных значений коэффициента увлажнения у природных зон равнин умеренных широт не наблюдается (Шальнев, 1973).

При сравнении показателей таблицы 2 от подножия (1340м) к субальпийским лугам на высоте 2500м. над у.м., выявлено, что основные показатели метеоэлементов весьма высоки для станции 1, а на второй станции наблюдается спад показателей. От этой станции вполне упорядоченно возрастают метеоэлементы к типичной субальпике. Максимальные показатели температур характерны для высоты в 1340м, потом резкое падение для июльских температур на 4,3єС, а для годовой - 1,9єС и более плавное понижение, в результате которого годовая температура и температура воздуха в июле понижается на 0,6-1,0єС, а годовая температура в диапазоне высот 2350-2500м даже понижается на 1,9єС. При такой динамике температур минимальное количество осадков выпадает в хвойно-широколиственных лесах - 763 мм, затем повышается количество осадков, причем на 479 мм и на верхней границе пихтово-сосновых лесов составляет 1410 мм. А к субальпийским лугам количество осадков увеличивается плавно - на 84-168 мм. Но при таком росте количества осадков, влажность воздуха с высотой уменьшается: минимальная на станции 4 (68 мм), а максимальная - на станции 1 (76 мм). Радиационный баланс с высотой уменьшается от 38,0 ккал/см2 до 30,1 ккал/см2, причем разница между первыми двумя станциями составляет 6,9 ккал/см2. Расходная часть радиационного баланса, которая тратится на затраты тепла на испарение (LE) и турбулентный поток тепла в воздух (P). Вполне последовательно понижается показатели на испарение от 1340 м до 2500 м над у.м., с разницей 0,1 ккал/см2. Показатели P сначала понижаются на 6,3 ккал/см2, затем не изменяются на уровне высот 2050 м. и 2350 м и составляют 10,2 ккал/см2. На станции 4 показатель турбулентного потока тепла в воздух составляет всего лишь 10,2 ккал/см2. Затраты на испаряемость закономерно снижаются с 430 мм до 312 мм., это объясняется тем, что луговые ассоциации являются «открытым» участком, лишенным древесной и кустарниковой растительности. Соответственно, расходная часть радиационного баланса от леса к лугу возрастает.

При сравнении березовых криволесий и сосновых редколесий с типично субальпийскими лугами при разнице высот в 150м наблюдается снижение средней июльской и годовой температур на 1є и 1,5°, соответственно, и уменьшается влажность воздуха на 6%. При этом, от станции 3 к станции 4 возрастает количество осадков на 84 мм., то и радиационный баланс, затраты тепла на испарение и турбулентный поток тепла в воздух также возрастает, но незначительно на 0,1 ккал/см2 , 0,7 ккал/см2 и 0,2 ккал/см2 , соответственно. Испаряемость уменьшается на 10 мм, а значит и коэффициент сухости - на 0,3. Коэффициент увлажнения, наоборот, возрастает на 0,4. Так как, возрастание радиационного баланса параллельно ведет к нарастанию и эффективного излучения.

Таблица 2.

Изменение основных показателей метеоэлементов климата

по восточному профилю хребта Малая Хатипара (Шальнев, 1968-1975).

Станции

Абс.

высоты в м.

Температура

воздуха

Осадки за год в мм.

Влажность

воздуха

Ккал./смІ

Кс

Кв

LE/P

Испаряе-мость в мм.

июль

годо-

вая

%

мб.

R

LE

P

Станция 1 (пояс хвойно-широколиственных лесов)

1340

15,6

6,3

763

70

6,7

38,0

21,3

16,7

0,83

1,3

1,27

430

Станция 2 (верхняя граница пихтово-сосновых лесов)

2050

11,2

3,4

1242

76

5,9

31,1

20,7

10,4

0,42

3 3,55

1,98

350

Станция 3 (березовое криволесье, сосновые редколесья и субальпийские луга)

2350

10,6

2,7

1410

74

5,5

31,0

20,6

10,4

0,37

4,4

1,96

322

Станция 4 (субальпийские луга)

2500

9,6

0,8

1494

68

4,4

30,1

19,9

10,2

0,34

4,8

1,95

312

Примечание: R - радиационный баланс, LE - затраты тепла на испарение, P - турбулентный поток тепла в воздух, Кс - коэффициент сухости, Кв - коэффициент увлажнения.

При сравнении средних температурных показателей за 44 года (Братков, 2005) и за 7 лет (Шальнев, 1973) выявлено, что за многолетний период изменения составляли около 4єС на уровне 2037 м, а за семилетний промежуток на высотах от 1340м до 2350м над у.м. диапазон колебаний составлял 0,3-0,4єС. Среднегодовая температура на лугу в типичной субальпике (2500м) достигла 2єС. За более короткий временной промежуток времени градиент колебаний будет более сглаженный, чем за почти полувековой период, причем показатели, безусловно, усреднены, а общий анализ дан выше.

Еще одним показателем, характеризующим климатическую обстановку Западного Кавказа является количество осадков. Также можно проанализировать изменение величины годовых осадков на метеостанции «Клухорскиий перевал» за период 1960-2004 гг. (таблица 3), для получения многолетних показателей. По сравнению с предшествующим периодом годовое количество осадков увеличилось на 23 мм, что при средней величине около 1800 мм не существенно, однако сезонные изменения довольно весомы. Заметна хорошо выраженная тенденция увеличения осадков в холодный период при их сокращении в теплый период года. При этом в процентном исчислении, например, в январе количество осадков увеличилось на 42%, тогда как в мае они уменьшились на 35%.

Таблица 3.

Осадки за период 1960-2004 гг. по метеостанции «Клухорский перевал»,

в мм (Братков, 2005).

1960-2004гг.

1

2

3

4

5

6

7

8

9

10

11

12

Год

Осадкиmin.

10

3

4

81

22

51

32

28

39

24

21

10

1301

Осадкиmax.

498

305

378

342

290

346

277

259

425

563

439

440

2377

Осадкиср.

151

104

119

164

144

149

137

142

1581

196

177

163

1798

Минимальное количество осадков составляет 1301 мм в 1984 г., а максимальное - 2377 мм в 2001 г. Если сравнивать тенденции изменения осадков последовательно, то с 1960-х гг. их величина составляла 1718 мм, и до 1980-х гг. возрастает - 1763 мм, а в 80-ые гг. резко уменьшается - до 1575 мм. Но от 90 гг. к 2004 г. опять увеличивается среднегодовое количество осадков и составляет уже 2102 мм. Величина гидротермического коэффициента за период 1960-2004 гг. составила 3,82, т.е. уменьшилась с 4,6. Причем, гидротермический коэффициент представляет собой отношение суммы осадков за период с температурой выше +10є к сумме температур за тот же период. Величина коэффициента увлажнения, наоборот, несколько увеличилась: 3,52 вместо 3,40. А коэффициент увлажнения представляет собой отношение количества осадков к испаряемости за тот же период (Братков и др., 2005).

Самое минимальное количество осадков, исходя из таблицы 3, характерно для февраля и марта, затем резко возрастает в апреле и в летние месяцы колеблется от 51 до 28. Следующий пик достаточного увлажнения приходится на сентябрь. К январю наблюдается уменьшение количества осадков. При этом наибольший показатель осадков из критерия «Осадкиmin» отмечен в апреле - 81 мм, а минимальный - в феврале - 3 мм. Максимальное количество осадков изменяется вполне закономерно: значительно для осеннее-зимнего периода от 425 мм в сентябре до 498 мм в январе и максимум приходится на октябрь. В весеннее-летний период осадки уменьшаются: от 378 мм в марте (максимум) до 259 мм в августе (минимум).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.