Рефераты. Роль живых организмов в биологическом круговороте

p align="left">Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простые формы и только после этого в неорганические составляющие действием бактерий и грибов.

Уровни организации живой материи. Совместная деятельность продуцентов, консументов и редуцентов определяет непрерывное поддержание глобального биологического круговорота веществ в биосфере Земли. Этот процесс поддерживается закономерными взаимоотношениями составляющих биосферу пространственно-функциональных частей и обеспечивается особой системой связей, выступающих как механизм гомеостазирования биосферы - поддержания ее устойчивого функционирования на фоне изменчивых внешних и внутренних факторов. Поэтому биосферу можно рассматривать как глобальную экологическую систему, обеспечивающую устойчивое поддержание жизни в ее планетарном проявлении.

Любая биологическая (в том числе и экологическая) система характеризуется специфической функцией, упорядоченными взаимоотношениями составляющих систему частей (субсистем) и основывающимися на этих взаимодействиях регуляторными механизмами, определяющими целостность и устойчивость системы на фоне колеблющихся внешних условий. Из сказанного выше ясно, что биосфера в ее структуре и функции соответствует понятию биологической (экологической) системы.

На уровне биосферы как целого осуществляется всеобщая функциональная связь живого вещества с неживой природой. Ее структурно-функциональными составляющими (подсистемами), на уровне которых осуществляются конкретные циклы биологического круговорота, являются биогеоценозы (экосистемы).

2. Малый круговорот веществ в биосфере

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) - круговорот веществ, движущей силой которого является деятельность живых организмов. Биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируют автотрофами из неорганических веществ. Затем он потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов органические вещества подвергаются минерализации, т.е. превращению в неорганические вещества. Эти неорганические могут быть вновь использованы для синтеза автотрофами органических веществ.

В биогеохимических круговоротах следует различать две части:

1. резервный фонд - это часть вещества, не связанная с живыми организмами;

2. обменный фонд - значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением.

В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1. круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота);

2. круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и д.р.).

Круговороты газового типа совершенны, т.к. обладают большим обменным фондом, а значит способы к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, т.к. основная масса вещества содержится в резервном фонде земной коре в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре. Кроме того, в тундре биологические процессы протекают только в теплое время года.

Продуценты, консументы, детритофаги и редуценты экосистемы, поглощая и выделяя различные вещества, взаимодействуют между собой четко и согласованно. Органические вещества и кислород, образуемые фотосинтезирующими растениями, - важнейшие продукты питания и дыхания консументов. В то же время выделяемые консументами диоксид углерода и минеральные вещества навоза и мочи являются биогенами, столь необходимыми продуцентами. Поэтому вещества в экосистемах совершают практически полный круговорот, попадая сначала в живые организмы, затем в абиотическую среду и вновь возвращаясь в живое. Вот один из основных принципов функционирования экосистем: получение ресурсов и переработка отходов происходят в процессе круговорота всех элементов.

Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. К малому биогеохимическому круговороту биогенных элементов относятся: углерод, азот, фосфор, сера и др.

2.1 Круговорот углерода

Углерод существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, - диоксид углерода (СО2). В природе СО2 входит в состав атмосферы, а также находится в растворенном состоянии в гидросфере. Включение углерода в состав органических веществ происходит в процессе фотосинтеза, в результате которого на основе СО2 и Н2О образуются сахара. В дальнейшем другие процессы биосинтеза преобразуют эти углероды в более сложные, а также в протеиды, липиды. Все эти соединения не только формируют ткани фотосинтезирующих организмов, но и служат источником органических веществ для животных и незеленных растений.

В процессе дыхания все организмы окисляют сложные органические вещества; конечный продукт этого процесса, СО2, выводится во внешнюю среду, где вновь может вовлекаться в процесс фотосинтеза.

Углеродсодержащие органические соединения тканей живых организмов после их смерти подвергаются биологическому разложению организмами-редуцентами, в результате чего углерод в форме углекислоты вновь поступает в круговорот. Этот процесс составляет сущность так называемого почвенного дыхания.

При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом - через образование сапрофагами гумуса, минерализация которого воздействием грибов и бактерий может идти с различной, в том числе и с низкой, скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность сапрофагов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и круговорот приостанавливается. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля и нефти.

В гидросфере приостановка круговорота углерода связана с включением СО2 в состав СаСО3 в виде известняков, мела, кораллов. В этом случае углерод выключается из круговорота на целые геологические эпохи. Лишь поднятие органогенных пород над уровнем моря приводит к возобновлению круговорота через выщелачивание известняков атмосферными осадками. А также биогенным путем - действием лишайников, корней растений.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд тонн этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода приводит в возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.

Скорость круговорота СО2, т.е. время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

2.2 Круговорот азота

Главный источник азота органических соединений - молекулярный азот в составе атмосферы. Переход его в доступные живым организмам соединения может осуществляться разными путями. Так, электрические разряды при грозах синтезируют из азота и кислорода воздуха оксида азота, которые с дождевыми водами попадают в почву в форме селитры или азотной кислоты. Имеет место и фотохимическая фиксация азота.

Более важной формой усвоения азота является деятельность азот-фиксирующих микроорганизмов, синтезирующих сложные протеиды. Отмирая, они обогащают почву органическим азотом, который быстро минерализируются. Таким путем в почву ежегодно поступает около 25 кг азота на 1 га.

Наиболее эффективная фиксация азота осуществляется бактериями, формирующими симбиотические связи с бобовыми растениями. Образуемый ими органический азот диффундирует в ризосферу, а также включается в наземные органы растения-хозяина. Таким путем в наземных и подземных органах растений на 1 га накапливается за год 150-400 кг азота.

Существуют азотфиксирующие микроорганизмы, образующие симбиоз и другими растениями. В водной среде и на очень влажной почве непосредственную фиксацию атмосферного азота осуществляют цианобактерии. Во всех этих случаях азот попадает в растения в форме нитратов. Эти соединения через корни и проводящие пути доставляются в листья, где используются для синтеза протеинов; последние служат основой для азотного питания животных.

Экскреты и мертвые организмы составляют базу цепей питания организмов-сапрофагов, разлагающих органические соединения с постепенным превращением органических азотсодержащих веществ в неорганические. Конечным звеном этой редукционной цепи оказываются аммонифицирующие организмы, образующие аммиак, который затем может войти в цикл нитрификации. Таким образом цикл азота может быть продолжен.

В то же время происходит постоянное возвращение азота в атмосферу действием бактерий-денитрификаторов, которые разлагают нитраты до N2. Эти бактерии активны в почвах, богатых азотом и углеродом. Благодаря их деятельности ежегодно с 1 га почвы улетучиваются до 50-60 кг азота.

Азот может выключаться из круговорота путем аккумуляции в глубоководных осадках океана. В известной мере это компенсируется выделением молекулярного N2 в составе вулканических газов.

2.3 Круговорот фосфора

Из всех макроэлементов (элементов, необходимых для всего живого в больших количествах) фосфор - один из самых редких в доступных резервуарах на поверхности Земли. В природе фосфор в больших количествах содержится в ряде горных пород. В процессе разрушения этих пород он попадает в наземные экосистемы или выщелачивается осадками и в конце концов оказывается в гидросфере. В обоих случаях этот элемент вступает в пищевые цепи. В большинстве случаев организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и таким образом снова вовлекаются в круговорот.

В океане часть фосфатов с отмершими органическими остатками попадает в глубинные осадки и накапливается там, выключаясь из круговорота. Процесс естественного круговорота фосфора в современных условиях интенсифицируется применением в сельском хозяйстве фосфорных удобрений, источником которых служат залежи минеральных фосфатов. Это может быть поводом для тревоги, поскольку соли фосфора при таком использовании быстро выщелачиваются, а масштабы эксплуатации минеральных ресурсов все время растут. Составляя в настоящее время около 2 млн. тонн в год.

2.4 Круговорот серы

Основной резерв фонд серы находится в отложении и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечение серы в биогеохимический круговорот принадлежит микроорганизмами. Одни из них восстановители, другие - окислители.

В горных породах сера встречается в виде сульфидов, в растворах - в форме иона, в газообразной фазе в виде сероводорода или сернистого газа. В некоторых организмах сера накапливается в чистом виде (S) и при их отмирании на дне морей образуются залежи самородной серы.

По содержанию в морской среде сульфат-ион занимает второе место после хлора и является основной доступной формой серы, которая потребляется автотрофами и включается в состав белков.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до HS, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводорода улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Сжигание человеком ископаемого топлива, а также выбросы химической промышленности, приводит к накоплению в атмосфере сернистого газа (SO), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.

Биогеохимические циклы в значительной степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.

Заключение

Сложные взаимоотношения, поддерживающие устойчивый круговорот веществ, а с ним и существование жизни как глобального явления нашей планеты, сформировались на протяжении длительной истории Земли.

Совместная деятельность различных живых организмов определяет закономерный круговорот отдельных элементов и химических соединений, включающий введение их в состав живых клеток, преобразования химических веществ в процессах метаболизма, выделение в окружающую среду и деструкцию органических веществ, в результате которой высвобождаются минеральные вещества, вновь включающиеся в биологические циклы.

Таким образом, процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом. А совместная деятельность качественных форм жизни обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот (основные элементы, мигрирующие по цепям биологического круговорота, - углерод, водород, азот, калий, кальций и др.).

Список литературы

1. Колесников С.И. Экология. - Ростов на Дону: «Феникс», 2003.

2. Петров К.М. Общая экология: Взаимодействие общества и природы: Учебн. пособие. 2-е изд.- СПб.; Химия, 1998.

3. Николайкин Н.И. Экология.: Учеб. для вузов/ Николайкин Н.Н., Николайкина Н.Е., Мелехина О.П. - 2-е изд., перераб. и доп.- М.: Дрофа, 2003.

4. Хотунцев Ю.Л. Экология и экологическая безопасность: Учеб. пособие для студ. высш. пед. учеб. заведений. - М.: Издательский центр «Академия», 2002.

5. Шилов И.А. Экология: Учеб. для биол. и мед. спец. вузов И.А. Шилов.-4-е изд., испр.- М.: Высшая школа, 2003.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.