Рефераты. Системы живого мира

p align="left">· человеческую (рациональную) душу (anima rationalis), которая включает способность к мышлению и познанию.

Известно, что аристотелевская классификация воспроизводится в той или иной форме в работах позднеантичных и средневековых мыслителей, причем не только перипатетиков, но и неоплатоников, примером может служить классификация типов жизни (vita) Эриугены:

vita insensibilis растения

vita sensibilis животные

vita rationalis человек

vita intellectualis ангел

Какой интерес представляют подобные натурфилософские классификации с точки зрения современной науки? Этот интерес заключается не в их буквальном применении к анализу уровневости живого, а в критическом сопоставлении с уровневыми концепциями современной науки.

Современные научные данные говорят о существенном значении того свойства (и «ступени бытия»), которое стоики обозначали как «сцепленность». Это свойство как рефрен проходит на деле через все уровни организации как материи вообще, так и живого. И в то же время его можно использовать как специфическую характеристику одного из уровней жизни - а именно наинизшего уровня проявления специфики жизни, уровня «самоорганизуемых комплексов апериодических полимеров» по Кремянскому, предбиологического уровня по Донцову. В 1944 г. А.Гурвич писал о «констелляциях» молекул как базисе живого. В чем же заключается сцепленность молекул, входящих в состав биосистем? В 1935 г. Э.Бауэр дает ответ, вновь и вновь подтверждаемый на протяжении XX века «неклассическими» экспериментальными данными.

Речь идет об особом неравновесном состоянии материи в живых организмах. Молекулы «сцепляются» между собой в ансамбли (белки, нуклеиновые кислоты), обладающие особым запасом энергии. Умирание организма, утрата неравновесного состояния ведет к высвобождению энергии в виде излучения (В.Л. Воейков). Чем больше сведений мы получаем о биомолекулярных ансамблях с целостными свойствами (и способностью к самосборке), тем в большей мере становится ясно, что многие биологические науки (биофизика, биохимия, «молекулярная биология» имеют дело с трупами. Фотографии ткани мышц, вошедшие в учебники по биологии, на которых видны чередующиеся светлые и темные полосы, отражают строение мертвых тканей.

Известно в то же время, что и труп некоторое время продолжает обнаруживать постепенно угасающие явления жизни. Соответственно, «остаточную» способность молекулярных ансамблей к самоорганизации, наблюдают у препаратов, выделенных из организмов методами современной «физико-химической биологии». С этим связана и поражавшая первые поколения молекулярных биологов возможность самосборки рибосом, свертывания ДНК. К аналогичным явлениям можно отнести и матричный синтез белка на рибосомах в бесклеточной системе. Разумеется, что лишь «бледное подобие» тех способностей, которые молекулы проявляют непосредственно в живой клетке.

В рамках уровня молекулярных ансамблей, наделенных этим свойством, создаются структуры следующего уровня жизни. Его можно назвать витальным. Витальный уровень в наибольшей мере сопоставим с «уровнем одноклеточного организма». Почему речь идет именно об одноклеточном организме? Многоклеточный организм в меньшей мере, чем одноклеточный, может быть сведен к витальному уровню, поскольку в нем в большей степени проявляется следующий, более высокий уровень.

В. Новак кладет в фундамент биологической эволюции «принцип социогенеза». Этот принцип предполагает ассоциацию и постепенную интеграцию биологических структур. Такой подход к исследованию систем живого мира требует более подробно рассмотреть проблему структурной организации и самоорганизации живой материи.

2. Классическая система живого мира

Построение естественной системы органического мира является непрерывным процессом. Это связано с бесконечной серией все углубляющихся и усложняющихся исследований. В настоящее время с учетом ископаемого и современного материала выделяют от 4 до 26 царств, от 33 до 132 типов, от 100 до 200 классов, а общее число видов оценивается в несколько миллионов. Естественно, что системы органического мира, построенные в различные времена, существенно отличаются друг от друга.

Большинство классификаций современных групп органического мира построены на основе кладистического метода, или кладистики (от греч. klados - ветвь). Кладистика - один из вариантов построения родословного древа органического мира, базируемого на степени родства, но без учета геохронологической последовательности. Полученные таким методом родословные благодаря эмбриологическим, цитологическим и другим исследованиям в целом достаточно объективно отражают уровни эволюции и степень родства групп. Тем не менее, без учета палеонтологических данных, то есть геохронологии, анализа признаков «предок-потомок» и «братья-сестры», основного звена развития и т.д., построение относительно стабильной филогенетической системы органического мира невозможно.

Теория и практика классификации органических объектов получили название таксономия (от греч. taxis - расположение, строй, закон). Необходимо различать два понятия: таксоны и таксономические категории, то есть ранги таксонов. Число таксонов как биологических объектов по мере познания органического мира все время возрастает.

Систематика (от греч. systematikos - упорядоченный) представляет собой раздел биологии, в задачи которого входят, с одной стороны, описание всего многообразия как современных, так и вымерших организмов, а с другой « упорядоченное иерархическое расположение таксономических категорий по отношению друг к другу. Иногда термины «систематика», «таксономия» и «классификация» считают синонимами, поэтому наряду с понятием «таксономическая категория» нередко используют понятие «систематическая категория». Таким образом, систематика (таксономия, классификация) представляет собой прежде всего процесс исследования, а построение системы является конечным результатом.

Считают, что понятия «род» и «вид», а также бинарное название (биномен) вида впервые предложил в середине XVI века Конрад Геснер. Бинарная номенклатура (от лат. binarius - состоящий из двух частей и nomenclatura - перечень имен) означает, что вид получает двойное наименование: первое слово отвечало названию рода, а второе представляло соответственно видовое название, например Betula alba, то есть Береза белая.

Широкое применение бинарной номенклатуры началось с работ английского священнослужителя Дж. Рея (1628-1705), который оставил заметный след в развитии естествознания. Ботаник-систематик, зоолог и путешественник Дж. Рей предложил разделять растения на две большие группы (в современном понимании однодольные и двудольные).

Создателем научной таксономии и систематики по праву является шведский натуралист К. Линней (1707-1778). Он разработал правила и принципы классификации и построил иерархическую систему для известных в то время современных и ископаемых животных и растений. С его работами с середины XVIII века окончательно утвердилось применение бинарной номенклатуры.

В настоящее время число основных таксономических категорий возросло до двенадцати: вид, род, триба, семейство, отряд, когорта, класс, тип, раздел, царство, доминион, империя. Для ботанических таксонов в ранге отряда и типа используются соответственно порядок и отдел, хотя некоторые авторы считают, что типу в царстве животных соответствует подотдел в царстве растений.

Благодаря систематике разнообразие жизни предстает не как хаотическое нагромождение организмов, а как определенным образом упорядоченная система, изменяющаяся от простого к сложному. Естественно стремление построить такую систему, которая отражала бы последовательность «предки - потомки». Исходным может быть постулат, что более простые организмы соответствуют предковым состояниям, а более сложные - последующим уровням развития. Но и простые организмы, развиваясь, образуют совокупности различной сложности.

Систему органического мира изображают в двух основных вариантах: в виде родословного древа, ветви которого связаны родственными отношениями и соответствуют определенным таксонам, или как перечень названий таксонов в иерархической последовательности. Излагаемая ниже система включает два надцарства и пять царств:

Для двух наиболее крупных царств - растений и животных - принята следующая иерархия высших таксонов:

Многие организмы бактериального, растительного и животного происхождения на одноклеточном уровне имеют ряд сходных черт. На это давно было обращено внимание, и в 1866 году Э. Геккель выделил самостоятельное царство Protista (от греч. protistos - самый первый). Современные сторонники обособления царства Protista включают в него как одноклеточных эукариот, так и многоклеточные водоросли.

Основу живых организмов составляет клетка, которая функционирует как самостоятельный организм - разнообразные одноклеточные, либо клетки являются составной частью многоклеточных. Основное содержимое клетки - цитоплазма заключает одно или несколько ядер, вакуоли, митохондрии и т.д. Наличие ядра, представляющего собой генетический аппарат, или отсутствие оформленного ядра является морфологическим признаком для разграничения надцарства прокариот (доядерные) и эукариот (ядерные).

Существует гипотеза, что на первых этапах эволюции органического мира широко проявлялся процесс возникновения более сложных организмов за счет слияния нескольких простых (симбиогенез, эндосимбиоз). Современная эукариотная клетка возникла в результате длительных и многократных эндосимбиозов. Возможно, что такие клеточные структуры, как реснички, жгутики, центриоли, появились за счет серии внедрений различных бактерий и цианобионтов.

Надцарство доядерные организмы. Superregnum Procaryota

Это одноклеточные и колониальные организмы, не имеющие обособленного ядра. Цитоплазма имеет стенку, генетическая информация сосредоточена в единственной хромосоме. Размеры прокариот от 0,015 мкм до 20 см. Они появились в интервале 3,8-3,1 млрд лет. Прокариоты разделяются на два царства: бактерии и цианобионты. Обмен веществ осуществляется в процессе хемосинтеза и фотосинтеза.

Царство Бактерии. Regnum Bacteria

Бактерии представляют собой микроскопические организмы, размеры которых обычно около 1-5 мкм. Гигантские бактерии размером до 10 000 мкм обнаружены в денсали. Среди бактерий встречаются автотрофные и гетеротрофные формы. Первые создают органические вещества из неорганических, вторые используют готовые органические вещества. Большинство бактерий являются автотрофами, обычно их называют литотрофами. Процессы обмена веществ у автотрофных бактерий идут без использования света (хемосинтез, хемолитотрофы) либо только на свету (фотосинтез, фотолитотрофы).

Некоторые исследователи объединяют с бактериями вирусы, полагая, что упрощение их строения обусловлено способом существования - внутриклеточные паразиты. Другие рассматривают их как доклеточную форму жизни и выделяют в самостоятельное царство Virae. Вирусы в ископаемом состоянии пока не обнаружены.

Царство Цианобионты. Regnum Cyanobionta

Одиночные и колониальные организмы с постоянной формой клеток без обособленного ядра. Размеры одиночных форм микроскопические - около 10 мкм. Размеры колоний, а особенно продуктов их жизнедеятельности (строматолиты) могут достигать многих сотен метров. Колониальные формы покрыты общей слизистой оболочкой. В самом организме, на его поверхности и в слизистой оболочке может происходить накопление карбонатов, приводящее в дальнейшем к формированию известняков. Известняковые слоистые образования получили название строматолитов.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.