Центральным для жизни как таковой является процесс постоянного самообновления всех составных частей организма, что, по существу, тождественно определению жизни как таковой. Вполне логично представить, что уровень самообновления определяет и уровень жизнеспособности. Однако, высокие скорости процессов самообновления для уровня биохимических процессов (мкСек) и даже для клеточных процессов (часы) однозначно указывают, что на этих уровнях самообновление должно стремиться, что на самом деле и имеет место, к стабилизации в каждый момент времени. Действительно, с точки зрения современных теорий самоорганизации и кибернетики биохимические процессы и клеточное самообновление - это саморегулирующиеся и самостабилизирующиеся системы. Для них нет никаких процессов, которые способны были бы во времени постоянно и однонаправленно изменять состояние всего организма в одном направлении - процессов развития и старения.
Для осуществления долговременных процессов развития организм использует специальные уже чисто регуляторные, механизмы, функционирующие на уровне целостного организма. В ряде случаев осуществление таких регуляторных программ может приводить к снижению самообновления, а, значит, и жизнеспособностии - к старению (Давыдовский, 1966, Донцов, Крутько, Подколзин, 1997, Подколзин, Донцов, 1997, Фролькис, 1975).
Рассмотрим следующую простую схему. Пусть уровень самообновления (например, уровень клеточного самообновления путем деления клеток в популяции, ограниченной и стабилизированной кейлонными и иными обратными связями) будет пропорционален некоторому веществу "С". Это можно обеспечить, например, за счет растормаживания вырабатывающих это вещество регуляторных "s" клеток. Реально такие процессы широко известны, например, для нейрогормональной регуляции и осуществляются за счет спонтанной высокой гибели клеток-ингибиторов "i" в регуляторных центрах вегетативного мозга (гипоталамуса).
Таким образом, регуляторная теория старения оказывается достаточно простой и эффективной при качественном и количественном описании процессов старения реальных систем. Более того, она едва ли не единственная может объяснить причины высоких видовых различий по срокам жизни для близких видов, построенных из сходных типов клеток и тканей (например, для человека и мыши) и возможности в ряде случаев резко, в разы, а для нетеплокровных и на порядки, изменять длительность жизни организмов в эксперименте или при изменении естественных условий.
Совершенно ясно, например, что для мышей, у которых имеет место различие в разы длительности жизни весенней и осенней генераций потомства в естественных условиях регуляторные механизмы принципиально более важны, чем для человека, у которых фактически нет сезонных ритмов старения. Ясно также и то, что изменения тканей 2-х летней мыши, аналогичные изменениям однотипных тканей 60-80-летнего человека в принципе также в большой мере зависят от регуляторных влияний, тогда как живущий в течение 100 лет человек гораздо менее подвержен, видимо, действию собственно регуляторных механизмов.
Новая иммунная теория старения
Оригинальными российскими исследованиями показано, что в современном многоклеточном организме существует специальная система регуляции клеточного роста любых соматических пролиферирующих клеток, представленная, в частности, субпопуляциями Т-лимфоцитов (система КРП).
Более подробно этот вопрос рассмотрен в отдельных публикациях (Донцов, 1990, Донцов, Крутько, Подколзин, 1997, Подколзин, Донцов, 1997).
Показано рядом авторов, что эта система непосредственно связана и с регуляцией роста целостного организма, с процессами регенерации, гиперплазии, опухолевого роста и со снижением уровня клеточного самообновления в старости, когда снижается скорость клеточного деления самых различных типов соматических клеток.
Ими была выдвинута новая иммунная (лимфоидная) теория старения, связывающая возрастное снижение клеточного роста и самообновления непосредственно с регуляторными изменениями в Т-лимфоидной системе иммунитета, в той ее части, которая регулирует клеточный рост соматических клеток (Донцов, 1990-2000).
Может показаться, что хорошее соответствие полученных результатов для "регуляторной теории" старения позволяет быстро и просто обратить старение внешним введением регуляторного фактора "F. Однако, в реальности в организме протекают процессы старения и не связанные с самообновлением, представленные выше и отражающие, например, необратимую гибель нервных клеток, альвеол, нефронов, отдельных уникальных генов в клетке, даже зубов и пр. Именно этим механизмам принадлежит, видимо, центральная роль в старении рыб и иных постоянно растущих в течение всей жизни организмов.
Фактически, в организме имеется огромное число необновляющихся на своем иерархическом уровне элементов, стареющих необратимо по механизму простой утраты клеток. Не трудно видеть, что этот же механизм лежить в основе и разобранных регуляторных механизмов - так стареют нервные регуляторные центры. Вклад данного механизма в старение достаточно высок - к концу жизни, например, человек теряет более половины нефронов в почках, альвеол в легких, более 70% клеток некоторых регуляторных центров гипоталамуса и пр. Сформировавшиеся вторичные изменения, например, компенсаторное увеличение объема альвеол и возрастная эмфизема, не обратимы. Вот почему все методы биостимуляции как правило не приводили к выраженному повышению продолжительности жизни - старый организм не способен поддерживать высокий уровень самообновления и функционирования, поэтому снижение самообновления в старости - это механизм старения и компенсационный процесс для старого организма.
Старение как спонтанная потеря и изменение информации
Существуют еще минимум два механизма старения, вносящие свой вклад в старение целостного организма.
Это, во-первых, изменение при старении обмена веществ (а также энергии и информации) с внешней средой и, во-вторых, повышение степени разнообразия для самых разных структурных элементов и связей в организме - "разрегулирование" целостной системы организма.
Оба механизма являются конкретизацией процесса спонтанной утраты информации в системе, за которым следует ее материальная и энергетическая деградация. Действительно, положим, что некоторая система (организм) получает извне поток вещества (Р1), энергии (W1) и информации (I1). Сохранение самое себя системой означает поддерживание постоянства материальной структуры системы (p2), энергетических потоков и взаимосвязей (w2) и тождества во времени информации о себе (i2); заметим также, что, так как организм только часть большего его некоторого целого - биосферы, например, то (P1, W1, I1) >>> (p2, w2, i2).
Кроме того, сохранение системы во времени означает тождество суммарных потоков, поступающих из внешней среды, выводящейся из системы и сохраняющегося динамически потока внутри системы. Не трудно видеть, что центральным при таком рассмотрении оказывается процесс сохранения информации в системе, т.к. вещественная и энергетическая организация являются только "материальными носителями" этой информации и, фактически, следуют качественно и количественно за изменением информации, которая выступает как регулирующий, управляющий и самоорганизующийся фактор.
В общем виде информация в системе может изменяться благодаря следующим процессам:
· поступлению информации (и энтропии) извне (например, "ремонт" силами извне или эволюционное давление при формировании новых признаков и т.п.);
· появление новой информации (и энтропии) внутри системы за счет взаимодействия в ней вещества и энергии в ходе сложнейших взаимопревращений и взаимосвязей (метаболизм, рост и развитие, механизмы саморегуляции и самоорганизации и т.п.);
· изменение и потеря информации в системе (развертывание программ роста и развития; "мутации" материальных носителей информации - ДНК, белков и иерархически других структурных уровней материальных носителей информации; спонтанный распад информации - производство энтропии и т.п.).
Процесс утраты информации аналогичен ее изменению - "мутациям", причем он носит вероятностный характер и, по существу, сводится или к ошибкам в ходе процесса воспроизводства информации в ходе самокопирования материальных носителей информации, или к спотанному вероятностному "мутированию" невоспроизводящейся информации (например, повреждения свободными радикалами неделящейся ДНК и т.п.). Заметим, что во многих случаях "мутировавшая" информация способна к воспроизводству (например, большинство мутаций клеток не приводят к прекращению их деления) и часто сохраняется возможность функционирования воспроизводящихся на ее основе структур, которые, таким образом, вступают в конкуренцию с имеющимися ранее структурами организма.
Соответственно, "мутировавшая" информация может также воспроизводиться сама, пополняться за счет мутаций неизменившейся информации и рассеиваться (обратная мутация в исходную форму крайне мало вероятна и очень мала): dIm/dt = k4 Im + k2 Im - k5 Im
Для того, чтобы учесть требуемое сохранение постоянства вещества, энергии и информации после прекращения развития у взрослого организма, введем в формулы ограничение количества информации (I+Im=const), получив известную из кибернетики формулу самовоспроизводящейся системы с обратными положительными и отрицательными связями: dI/dt = k1 I / k4 (I + Im) - k2 Im - k3 I; dIm/dt = k5 Im / k4 (I + Im) + k2 Im - k6Im
Численная модель рассеивания начальной информации в стабилизировавшейся системе представлена на рисунке 5.
При анализе модели учтено, что мутировавшие клетки обычно менее жизнеспособны и, кроме того, подвергаются иммунному надзору и гибнут поэтому быстрее, а также по тем же причинам с меньшей скоростью самообновляются. Соответственно коэффициенты для модели подобраны в случае графика: k1=0,3, k5=0,2, k4=0,1, k2=0,03, k3=0,05, k6=0,07.
На модели можно видеть, что со временем соотношение мутантных и неизмененных единиц информации стабилизируется, но в течение некоторого периода будет иметь место нарастание числа мутаци, что будет вести к нарастанию смертности. Вид кривой смертности, однако, не экспоненциальный, а линейный, а логарифма смертности - выпуклый, что значительно отличается от реальной картины. Это не удивительно, так как время установления равновесия I и Im невелико - фактически, например, время клеточного деления для клеток слизистой и кожи - дни и часы, поэтому на фоне многих лет жизни напрямую этот механизм вряд ли вносит существенный вклад в процесс старения. Накопление мутаций скорее отражает другие процессы - резкое (регуляторное) снижение скорости клеточного самообновления и снижение эффективности иммунного надзора с возрастом. Мутации важны и в случае повышения с возрастом риска возникновения опухолей, что вносит значительный вклад в причины смертности для млекопитающих вообще и человека в особенности.
Так как мутации возможны самые разнообразные, то фактически за счет этого же механизма мы имеем и второе характерное для старения следствие: увеличение разнообразия исходно однородных структур. Увеличение разнообразия структур - появление большого количества "чужой" информации. Она перегружает системы организма, ответственные за распознавание и удаление ее, причем, т.к. фактически, новые структуры лишь немного отличаются от старых и сохраняют во многих случаях практически на прежнем уровне функциональную способность и, соответственно, реальную ценность для организма, то чрезмерная реакция против "чужого" даже вредна.
Страницы: 1, 2, 3