Рефераты. Стійкість до голодування і активність АДГ у Drosophila melanogaster із природних популяцій України

евне розуміння генетичних аспектів, а саме успадковування та мінливість стійкості до голоду, може бути отримане шляхом аналізу схрещувань між стійкими та нестійкими генотипами. Вчені використали цей підхід для вивчення генетичної структури відмінностей між двома парами географічно віддалених популяцій дрозофіли із Південної Америки та Австралії. Цікавим виявилось те, що обидві статі мух у Південній Америці та самки дрозофіл у Австралії виявляли позитивні ефекти домінування по материнській лінії, тобто нащадки виявляли вищу стійкість до голодування, якщо ця ознака була високою у матері.

Разом із простим материнським ефектом були виявлені також парадоксальні результати, а саме: менш стійкі до голоду матері давали більш стійких нащадків обох статей. Причини виявлених закономірностей і досі залишаються невідомими.

Результати, отримані при картуванні генів кількісних ознак, а також дані тестування на кількісну комплементацію (Mackay, Fry, 1996) дозволили визначити шлях до ідентифікації специфічних локусів, що відповідають за неоднакову стійкість до голодування. Як випливало із попередніх даних, природний поліморфізм локусу десатурази-2 міг впливати на стійкість мух до голодування (Greenberg et al., 2003), але подальші експерименти (Coyne, Elwyn, 2006) не підтвердили це припущення. Використовуючи більш комплексний підхід, було ідентифіковано 13 локусів (6 із них мали статево-специфічний ефект), які вносять вклад в розбіжності щодо стійкості до голодування між двома лабораторними лініями мух. Ці локуси включають гени, що беруть участь в оогенезі (ген l(2)G270 впливає на розвиток яйцеклітини) та метаболізмі (гени, що регулюють розподіл жирів). Також були визначені гени, що впливають на харчову поведінку мух (наприклад, ген NaСР60Е).

Вченими також вивчалися зміни в експресії генів, викликані умовами голодування. Даний підхід не є досить інформативним щодо генетичної мінливості здатності витримати голод, але проливає світло на молекулярні механізми відповіді на харчовий стрес. При голодуванні гени, що задіяні в біосинтезі білків і гідролазній активності, мають тенденцію до неврегульованості та надлишкового синтезу. Таким чином організм намагається компенсувати нестачу поживних речовин і, як наслідок, пережити несприятливі умови голодування.

Відмінності в ході добору по стійкості до голодування можуть призводити до відмінностей за цією ознакою між популяціями. Докази таких відмінностей знайдені при вивченні великих географічно віддалених популяцій. Вченими було показано, що на Індійському півострові має місце негативна кореляція між стійкістю до голодування та географічною широтою для п'яти видів дрозофіли (включаючи і Drosophila melanogaster). Аналогічним чином, розподіл по довготі був недавно показаний для двох інших видів дрозофіли на Індійському півострові (Parkash, 2005). Навпаки, позитивна кореляція між досліджуваною ознакою та широтою у Drosophila melanogaster, була виявлена на сході Південної Америки (Schmidt, 2005). В той же час ніяких варіацій по даній ознаці не було виявлено у особин з Південної Америки та Східої Австралії. Таким чином, наведені дані свідчать про те, що залежність між стійкістю до голодування та географічною широтою підтверджується не завжди.

Аналізуючи дані літератури щодо стійкості до голодування особин популяції Drosophila melanogaster, можна відзначити, що за останні роки були проведені дослідження, спрямовані на розкриття молекулярних та фізіологічних механізмів відповіді на харчовий стрес. Існує думка, що дана ознака відтворює рівень адаптивної пластичності та являється частиною механізму виживання, який може частково піддаватися інсуліновій системі регуляції.

Що стосується розуміння екологічних аспектів витривалості до голодування, то і досі залишається багато питань відносно природного добору за цією ознакою.

Дрозофіла надає унікальну можливість для повноцінного розуміння та інтеграції різних аспектів еволюційної відповіді на харчовий стрес.

1.2 Активність алкогольдегідрогенази у Drosophila melanogaster

Механізми адаптації генотипів та популяцій до дії екологічних факторів є досить цікавими і тому інтенсивно вивчаються в багатьох лабораторіях. В даному контексті вважається доцільним вияснити роль ферменту алкгольдегідрогенази (АДГ) в життєдіяльності та адаптації у Drosophila melanogaster. Ген-ензимна система АДГ на протязі тривалого часу притягує увагу численних дослідників в різних областях генетики - від молекулярної до популяційної, завдяки відносно простій ідентифікації ферменту, значному поліморфізму і тій ключовій ролі, що АДГ відіграє в життєдіяльності дрозофіли (цей фермент допомагає здійснювати детоксикацію та утилізацію спирту, який являється важливим компонентом середовища існування плодової мушки).

Фермент АДГ (по класифікації ферментів - КФ 1. 1. 1. 1.) відноситься до класу оксидоредуктаз, об`єктом дії яких є група СН-ОН.

Ацетальдегід + НАДН + Н+ > етанол + НАД

Алкогольдегідрогеназа широко розповсюджена в природі. Алкогольдегідрогеназна активність притаманна різним клітинам всіх живих організмів.

Піридиновий нуклеотид в якості коферменту відіграє головну роль в реакції з усіма вивченими АДГ, при цьому фермент може окислювати не лише етанол, але й інші первинні та вторинні спирти [Діксон, 1982]. При перетворенні етилового спирту в ацетальдегід спостерігається впорядкована багатоточкова взаємодія в АДГ між ферментним білком, субстратом і коферментом.

АДГ дрозофіли складається із двох субодиниць з молекулярною масою 60 кДа та відрізняється від інших алкогольдегідрогеназ відсутністю Zn2+. Крім цього АДГ дрозофіли проявляє неабияку спорідненість до вторинних спиртів. Швидкість реакції, що каталізується АДГ Drosophila melanogaster, при використанні вторинних спиртів як субстратів, в декілька разів більша, ніж швидкість окислення етанолу. Амінокислотна послідовність АДГ дрозофіли відрізняється від інших алкогольдегідрогеназ. При картуванні пептидів АДГ Drosophila melanogaster виявлена наявність активного залишку цис-135 в домені, що зв'язує НАД+, а також двох залишків амідів на С-кінці пептиду. Таким чином, буде відрізнятися також і механізм дії АДГ дрозофіли - даний фермент формує нестійкий комплекс із субстратом і коферментом [Chambers, 1984].

Алкогольдегідрогеназа відіграє головну роль в каталізі останнього етапу спиртового бродіння, що притаманне дріжджам, а також тканинам, що знаходяться в анаеробному стані [Ленінджер,1985; Страєр, 1985]. Для АДГ плодової мушки більш характерною є зворотна реакція окислення спиртів до альдегідів чи кетонів, оскільки спирти є важливим компонентом середовищ існування дрозофіли. Drosophila melanogaster відрізняється від інших видів дрозофіли здатністю використовувати етанол та інші спирти як джерела поживних речовин на різних стадіях свого розвитку. АДГ є основним ферментом в метаболізмі етилового спирту у мух. Мутанти, яким не притаманна алкогольдегідрогеназна активність, є дуже чутливими до токсичної дії спирту та не можуть використовувати його [Economos, 1986 ; McKechnie , 1984].

Більш детальне вивчення системи метаболізму етанолу у D. melanogaster та деяких інших видів дозволило виявити наявність двох самостійних ферментів: алкогольдегідрогенази та альдегіддегідрогенази, що приймають безпосередню участь у деградації етилового спирту, а також встановити пряму кореляцію між їх активностями у дорослих особин. Це дало вагому підставу припустити, що у дрозофіли окислення етанолу здійснюється через ацетальдегід шляхом послідовної дії двох вищезазначених [Garcin, 1986, Lietart,1985]. Наявність альдегіддегідрогенази виявляється переважно у фракції мітохондрій, а алкогольдегідрогенази - в цитозолі [Lietart, 1985; Garcin, 1986].

Результати численних досліджень показали наявність в усіх природних популяціях Drosophila melanogaster двох варіантів АДГ, що відрізняються электрофоретично - АДГ-F и АДГ-S. Вони знаходяться під контролем структурного гена Adh, що локалізований в хромосомі 2 в положенні 50.1. Амінокислотні послідовності білків класу АДГ-F відрізняються від таких класу АДГ-S заміною лізину на треонін в позиції 192. Ця амінокислотна заміна торкається тієї області, яка являється каталітичним доменом ферменту, що і лежить в основі різниці у відносній активності, термостабільності та інших властивостях алозимів [Chambers, Wilks et al., 1984]. Завдяки генетичному поліморфізму, локус Adh відіграє важливу роль в генотипічній адаптації дрозофіли до факторів зовнішнього середовища.

При електрофорезі в поліакриламідному гелі АДГ виявляється в виді двох - трьох зон із головною катодною смугою (АДГ-5) та додатковими більш рухливими смугами (АДГ-3 і АДГ-1). У АДГ-S, яка є менш рухливою, смуги на електрофореграмах зміщуються ближче до катоду і займають положення 7, 5, 3 відповідно [Крутовський, 1983; Chambers, 1984; 1991; Johnson, 1964; Schwartz, 1976].

Встановлено, що при тривалому голодуванні мух, або при їх обробці низькими концентраціями ацетилацетону, проявляється високий рівень експресії АДГ-1 та АДГ-3 за рахунок конверсії алозимного спектру. Дія на мух різних концентрацій етанолу призводила до ретроконверсії молекулярних форм АДГ [Heinstra, 1986].

Припускається [Mckechnie, 1984], що взаємне перетворення модифікованих молекул АДГ, що характеризуються різною стабільністю та кінетичними характеристиками, є важливою ланкою в складній системі адаптації Drosophila melanogaster до екзогенного етанолу. Відповідно до цієї гіпотези екзогенний етанол стимулює ріст активності АДГ, збільшуючи співвідношення НАДН / НАД, тим самим знижуючи відносну кількість АДГ-1 на користь АДГ-3 та АДГ-5.

Здійснюючи регуляцію рівнів НАД / НАДН і НАДР / НАДРН, які в свою чергу регулюють розпад інших ферментів, АДГ також впливає на життєздатність дрозофіли [Xinmi, 1992]. Очевидно, такий спосіб регуляції активності фермента ? найбільш важливий в процесах адаптації [Anderson,1983].

Численні дослідження показали, що здатність мух до існування в умовах з високим вмістом алкоголю знаходяться в залежності від рівня активності їх АДГ [Pecsenye, 1994; 1997]. Хоча вирішальне значення для виживання мух при збільшених концентраціях спирту відіграє абсолютна кількість АДГ, а не активність ферменту [Anderson, 1983]. Це підтверджено імунохімічними та молекулярно-біологічними дослідженнями. Так, встановлено, що кількість білку АДГ визначається швидкістю синтезу, що позитивно корелює із рівнем цитоплазматичної мРНК [Anderson,1983; Birley, 1984]. Таким чином, регуляцію активності АДГ за рахунок зміни кількості ферментного білку на різних стадіях розвитку Drosophila melanogaster можна вважати достовірно встановленою.

В зв'язку із важливою роллю ген-ензимної системи АДГ в процесах метаболізму і адаптації дрозофіли, рівень активності та інші характеристики алкогольдегідрогенази можна розглядати як критерій пристосованості генотипу.

2. Матеріали та методи досліджень

Дослідження проводили на мухах Drosophila melanogaster, що відносяться до родини Drosophilidae із відділу Diptera. Дрозофіла є класичним об'єктом генетичних досліджень, завдяки наступним властивостям. По-перше, у неї порівняно короткий період онтогенезу; по-друге, вона легко виживає та розвивається в лабораторних умовах, а також не потребує значних витрат на розведення та харчування.

Для цих мух комфортною температурою вважається 24 - 25?С. При такій температурі цикл розвитку дрозофіли від яйця до дорослої мухи складає приблизно 10 діб. Розвиток яйця триває 20 годин, а розвиток личинки і лялечки - 8 діб. Таким чином за рік можна отримати до 40 поколінь дрозофіли. При температурі вищій за 31?С дрозофіла стає безплідною, хоча в природних умовах вона може витримувати і більш високі температури. Зі зниженням температури цикл розвитку мух дуже уповільнюється. Так, при температурі 10?С період личинки та лялечки значно зростає у часі.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.