Рефераты. Строение и принцип действия переносчиков

Строение и принцип действия переносчиков

2

Министерство образования и науки Российской Федерации

Пензенский государственный педагогический университет

им.В.Г. Белинского.

Кафедра биохимии

Курсовая работа

на тему:

Строение и принцип действия переносчиков

Выполнил: студентка

4 курса группы БХ-41

Живаева Любовь

Проверил:

к. б. н. Соловьев В.Б.

Пенза 2009 г

Содержание

    • Введение 3
    • 1. Переносчики: разнообразие функций 7
    • 2. Переносчики как ферменты: применение теории скоростей 9
    • 3. Применение теории переходного состояния при изучении работы переносчиков 10
    • 4. Анализ стационарного состояния 12
    • 5. Некоторые симпортеры, антипортеры и унипортеры 14
    • 5.1 Белок полосы 3 - анионный переносчик из мембраны эритроцитов 15
    • 5.2 Группа митохондриальных переносчиков. 17
    • 5.3 Переносчик глюкозы из мембраны эритроцита 18
    • 5.4 Лактозопермеаза из е. Соli 20
    • 6. Несколько примеров активных переносчиков, использующих энергию атр и фосфоенолпирувата 22
    • 6.1 Переносчики катионов плазматической мембраны (е1e2-типа): атр-зависимые ионные насосы 25
    • 6.2 АТР-азы F1F0-типа из митохондрий, хлоропластов и бактерии 30
    • 6.3 Три других класса переносчиков 32
    • Заключение 36
Введение

ОБЩИЕ ПОЛОЖЕНИЯ.

Фосфолипидный биослой является очень эффективным барьером для множества небольших растворимых молекул. Тем не менее через плазматическую мембрану, а также через мембраны, ограничивающие различные органеллы (например, митохондрии), постоянно транспортируются полярные вещества и ионы. Этот транспорт целиком опосредован белками, и для объяснения механизма переноса растворимых веществ через мембрану было предложено много моделей. Будет полезно ввести несколько терминов, использующихся для характеристики белков или структур, участвующих в трансмембранном транспорте. В табл.1 дается классификация транспортных белков. Прежде всего их подразделяют на каналы (или поры) и переносчики. Поры и каналы часто изображают в виде туннелей через мембрану, в которых места связывания транспортируемых растворимых веществ доступны с обеих сторон мембраны одновременно. Канальные белки не претерпевают никаких конформационных изменений в процессе переноса растворимых веществ с одной стороны мембраны на другую. Напротив, конформация переносчиков в процессе транспорта различных веществ изменяется. Переносимое вещество связывается с одной стороны мембраны, и для высвобождения его с другой стороны в переносчике должно произойти определенное конформационное изменение. При этом в любой момент времени место связывания вещества доступно только с одной стороны мембраны.

Таблица 1. Классификация некоторых транспортных белков, основанная на механизме их действия и энергетике.

Переносчики можно разделить на две группы: пассивные и активные. Мы будем использовать термин пассивный переносчик в том случае, когда при его участии осуществляется перенос через мембрану единственного типа веществ. Переносчики-унипортеры только увеличивают поток вещества, идущий без потребления энергии, т.е. по градиенту электрохимического потенциала. Такой процесс называется облегченной диффузией. Наиболее полно изученным пассивным переносчиком является переносчик глюкозы в эритроцитах.

Активные переносчики осуществляют перенос веществ через мембрану с затратами энергии, в результате эти вещества накапливаются с одной стороны мембраны. При этом транспорт вещества должен быть сопряжен с другим, запасающим свободную энергию процессом. Почти все первичные активные переносчики являются ионными насосами, в которых перемещение иона прямо сопряжено с поставляющей энергию химической или фотохимической реакцией. Примером ионного насоса является бактериородопсин, который для переноса протонов через мембрану использует энергию фотонов видимого света. В большинстве случаев ионные насосы являются электрогенными: при работе первичного насоса осуществляется перемещение заряда, в результате чего происходит разделение электрических зарядов и на мембране создается напряжение.

Первичные активные переносчики генерируют напряжение и создают трансмембранные ионные градиенты. Вторичные активные переносчики используют такие градиенты в качестве движущей силы для транспорта растворимых веществ. Наиболее полно охарактеризованным примером такого рода является белок - переносчик лактозы (лактозопермеаза) из Escherichia colt. Этот переносчик использует протонный электрохимический градиент, генерируемый дыхательной электронтранспортной цепью, в качестве движущей силы для накопления лактозы в клетке. Это пример симпорта, когда через мембрану одновременно переносятся два разных вещества (например, протоны и лактоза). Антипортеры осуществляют транспорт веществ в противоположных направлениях. Так, например, белок полосы 3 эритроцитов осуществляет сопряженный транспорт Cl - и НСО3 - в противоположных направлениях через эритроцитарную мембрану.

Термины пермеаза, транслоказа и переносчик, являющиеся синонимами, их часто используют по отношению к транспортным белкам, отличным от первичных активных переносчиков. Обычно термин "пермеаза" применяют при описании бактериальных транспортных белков. Термин "переносчик", по-видимому, лучше использовать по отношению к ионофорам или сходным с ними структурам, которые связываются с ионами и переносят их через биослой в составе комплекса.

Некоторые группы переносчиков:

1. Митохондриальные переносчики:

переносчик ADP/ATP; - переносчик Н+ - фосфатаза;

разобщающий белок (переносчик Н+ /ОН -)

2. Переносчики сахаров:

переносчик глюкозы (клетки млекопитающих);

переносчик Н+-арабинозы (Е. coli);

переносчик Н+ - ксилозы (Е. coli);

3. АТРазы E1E2-типа, сопряженные с трансмембранным переносом ионов:

Н+ /К+-АТРаза (слизистая желудка млекопитающих);

Na+ /К+ - АТРаза (плазматическая мембрана);

Са2+-АТРаза (саркоплазматический ретикулум);

Н+ - АТРаза (плазматическая мембрана);

К+-АТРаза (S. faecalis).

1. Переносчики: разнообразие функций

Функции переносчиков весьма разнообразны; проиллюстрируем их на нескольких примерах.

Таблица 2. Сравнение скоростей транспорта для некоторых систем.

Система

Скорость транспорта, с-1

Н+-лактозопермеаза Е

30

Переносчик глюкозы(эритроциты)

300

Анионный переносчик белок полосы 3

100 000

Бактериородопсин

50

Nа+/К+-АТРаза

450

Цитохром с-оксидаза

1000

В табл.2 приведены значения числа оборотов для нескольких переносчиков. Для лактозопермеазы Е. coli максимальное число оборотов составляет всего лишь 30 с-1. Ее роль состоит в транспорте лактозы - углевода, который затем участвует в клеточном метаболизме.

Для ионных насосов, использующих для работы энергию гидролиза АТР или переноса электронов, характерны максимальные числа оборотов, что довольно типично для ферментов.

Однако не все переносчики работают столь медленно. Анионный переносчик белок полосы 3 из эритроцитарной мембраны играет важную физиологическую роль в усилении быстрого трансмембранного обмена С1 - на НСО3-. Одна из функций эритроцитов заключается в усилении транспорта СО2 от различных тканей к легким. В венозных капиллярах СО2 быстро диффундирует через эритроцитарную мембрану. В клетке под действием карбоангидразы СО2 превращается в Н2СО3, затем быстро устанавливается равновесие Н2СО3 - Н+ + НСО3 - , и анион бикарбоната переносится через мембрану в плазму крови белком полосы 3. В результате по мере того, как эритроцит проходит по капиллярам, концентрация НСО3 - в плазме увеличивается, причем этот процесс занимает меньше 1 с. Когда кровь достигает легких, начинается диффузия СО2 в атмосферу. При этом под действием карбоангидразы в эритроцитах происходит массовое превращение Н2СО3 в СО2 и Н2О. Этот процесс в свою очередь является движущей силой для переноса аниона бикарбоната внутрь эритроцита, где он быстро превращается в СО2 и Н2О.

Транспортная система должна функционировать очень быстро, но в отличие от ионных каналов в аксонах здесь нет нужды в электрогенных реакциях, которые только замедлили бы быстрый массовый транспорт. Но транспорт катиона, например Na+, вместе с НСО3 - был бы нежелателен, поскольку изменение концентрации соли в эритроците привело бы к осмотическому дисбалансу. Эта проблема решается с помощью антипортера, который в обмен на каждый транспортируемый ион НСО3 - переносит в обратном направлении анион Сl-. Такая челночная система работает очень быстро.

2. Переносчики как ферменты: применение теории скоростей

Кинетическую теорию переходного состояния Эйринга, используемую энзимологами, успешно применяют и в случае различных транспортных систем. В основе этого подхода лежит предположение о том, что система может находиться в нескольких дискретных состояниях, каждому из которых соответствует стандартное значение электрохимического потенциала. При этом взаимные переходы между двумя состояниями сопряжены с переходом системы через промежуточные стадии с более высокой свобод ной энергией, и константы скоростей переходов зависят от высоты соответствующих энергетических барьеров. Минимумы на кривых изменения свободной энергии (рис.1) соответствуют местам связывания транспортируемых веществ. Можно предположить, что переносчик имеет одно или несколько мест связывания переносимых веществ. При достаточно высоких концентрациях переносимого вещества все эти места оказываются занятыми и скорость переноса достигает своего максимального значения К mах, равного максимальной скорости работы фермента. Экспериментальные подтверждения этому получены для всех переносчиков.

Рис.1

3. Применение теории переходного состояния при изучении работы переносчиков

Рассмотрим простой переносчик с одним местом связывания, транспортирующий молекулы через мембрану. Рис.2 иллюстрирует основные свойства как первичного активного переносчика, так и пермеазы.

Рис.2

Рассмотрим четыре состояния белка-переносчика:

1) белок обращен внутрь/связан с субстратом;

2) обращен внутрь/не связан;

3) обращен наружу/ связан с субстратом;

4) обращен наружу/не связан.

Тогда транспорт можно представить в виде следующей последовательности элементарных обратимых стадий. Субстрат связывается с участком, обращенным к одной стороне мембраны (определяемой как цис-сторона). Происходит конформационное изменение, существенно уменьшающее кинетический барьер для перемещения иона к выходу из канала и увеличивающее энергетический барьер для движения в обратном направлении. Это конформационное изменение может быть спонтанным или может происходить с потреблением энергии (например, энергии гидролиза АТР). Участок переносчика со связанным субстратом оказывается теперь обращенным к противоположной стороне мембраны (определяемой как транс-сторона). Субстрат высвобождается из комплекса с переносчиком и выходит на противоположной стороне мембраны. Для активных переносчиков сродство субстрата к белку ниже, когда место связывания обращено к транс-стороне мембраны. Происходит конформационное изменение, возвращающее белок-переносчик к исходной конформации, в которой место связывания вновь обращено к цис-стороне.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.