Рефераты. Строение растительной клетки. Ткани растений

p align="left">Когда все хромосомы расположатся в экваториальной плоскости, метафаза завершится. Хромосомы готовы к делению.

Анафаза. Хроматиды каждой хромосомы расходятся. Теперь это дочерние хромосомы. Прежде всего, делится центромера, и две дочерние хромосомы увлекаются к противоположным полюсам. При этом центромеры движутся впереди, а плечи хромосом тянутся сзади. Нити веретена, прикрепленные к хромосомам, укорачиваются , способствуя расхождению хроматид и движению дочерних хромосом в противоположные стороны.

Телофаза. В телофазе завершается обособление двух идентичных групп хромосом , при этом вокруг каждой из них формируется ядерная мембрана. В этом активное участие принимает шероховатый ретикулум. Аппарат веретена исчезает. В ходе телофазы хромосомы теряют чёткость очертаний, вытягиваются, превращаясь снова в тонкие нити. Ядрышки восстанавливаются. Когда хромосомы становятся невидимыми, митоз завершается. Два дочерние ядра вступают в интерфазу. Они генетически эквивалентны друг другу и материнскому ядру. Это очень важно, так как генетическая программа, а вместе с ней и все признаки должны быть переданы дочерним организмам.

Продолжительность митоза варьирует у различных организмов и она зависит от типа ткани. Однако профаза самая длинная, а анафаза самая короткая. В клетках кончика корня продолжительность профазы составляет 1 - 2 ч; метафазы - 5 - 15 мин; анафазы - 2 - 10 мин; телофазы - 10 - 30 мин. Продолжительность интерфазы составляет от 12 до 30 ч.

Во многих эукариотических клетках центры организации микротрубочек, ответственные за формирование митотического веретена, связаны с центриолями.

Цитокинез. Это процесс деления цитоплазмы. У большинства организмов клетки делятся путём втягивания клеточной оболочки и образования борозды деления, которая постепенно углубляется, сжимая оставшиеся нити митотического веретена. У всех растений (мохообразных и сосудистых) и у некоторых водорослей клетки делятся благодаря образованию клеточной пластинки.

В ранней телофазе между двумя дочерними ядрами формируется бочкообразная система волокон, называемая фрагмопластом. Волокна фрагмопласта, как и волокна митотического веретена, состоит из микротрубочек. В экваториальной плоскости фрагмопласта появляются мелкие капли. Они сливаются, образуя клеточную пластинку, которая растёт до тех пор, пока не достигнет оболочки делящейся клетки. На этом и завершается разделение двух дочерних клеток. Сливающиеся капельки - это пузырьки, отрывающиеся от аппарата Гольджи. В основном они содержат пектиновые вещества, из которых и формируется срединная пластинка. Мембраны пузырьков участвуют в построении плазматической мембраны по обеим сторонам пластинки. В это же время из фрагментов трубчатого эндоплазматического ретикулума образуются плазмодесмы.

После образования срединной пластинки каждый протопласт откладывает на ней первичную оболочку. Кроме того, каждая дочерняя клетка откладывает новый слой оболочки вокруг всего протопласта, которая продолжает оболочку, возникшую из клеточной пластинки. Исходная оболочка родительской клетки разрушается по мере роста дочерних клеток.

Различные типы митоза эукариот

Описанное выше деление клеток растений, животных тоже, - не единственная форма непрямого деления клеток. Наиболее простой тип митоза - плевромитоз. Он напоминает бинарное деление прокариотических клеток, у которых нуклеоиды после репликации остаются связанными с плазматической мембраной. Мембрана начинает расти между точками связывания ДНК и тем самым разносит хромосомы в разные участки клетки. После этого при образовании клеточной перетяжки каждая из молекул ДНК окажется в новой отдельной клетке.

Характерным для деления эукариотических клеток является образование веретена, построенного из микротрубочек. При закрытом плевромитозе (закрытым он называется потому, что расхождение хромосом происходит без нарушения ядерной оболочки) в качестве центров организации микротрубочек (ЦОМТ) участвуют не центриоли, а другие структуры, находящиеся на внутренней стороне ядерной мембраны. Это так называемые полярные тельца неопределённой морфологии, от которых отходят микротрубочки. Этих телец два. Они расходятся друг от друга, не теряя связи с ядерной оболочкой. В результате этого образуются два полуверетена, связанные с хромосомами. Весь процесс образования митотического веретена и расхождения хромосом в этом случае происходит под ядерной оболочкой. Такой тип митоза встречается среди простейших, широко распространён у грибов (хитридиевые, зигомицеты, дрожжи, оомицеты, аскомицеты, миксомицеты и др.). встречаются формы полузакрытого плевромитоза, когда на полюсах сформированного веретена ядерная оболочка разрушается.

Следующей формой митоза является ортомитоз. В этом случае ЦОМТ располагаются в цитоплазме, с самого начала идёт образование не полуверетён, а двухполюсного веретена. Существует три формы ортомитоза (обычный митоз), полузакрытый и закрытый. При полузакрытом ортомитозе образуется бисимметричное веретено с помощью расположенных в цитоплазме ЦОМТ, ядерная оболочка сохраняется в течении всего митоза, за исключением полярных зон. В качестве ЦОМТ могут обнаруживаться массы гранулярного материала или даже центриоли. Эта форма митоза встречается у зооспор зелёных, бурых, красных водорослей, у некоторых низших грибов и грегарин. При закрытом ортомитозе полностью сохраняется ядерная оболочка, при которой образуется настоящее веретено. Микротрубочки формируются в кариоплазме, реже отрастают от внутреннего ЦОМТ, не связанного (в отличие от плевромитоза) с ядерной оболочкой. Такого типа митозы характерны для деления микронуклеусов инфузорий, но могут встречаться и у простейших. При открытом ортомитозе ядерная оболочка полностью распадается. Этот тип деления клеток характерен для животных организмов, некоторых простейших и для клеток высших растений. Эта форма митоза в свою очередь представлена астральным и анастральным типами.

Из кратко рассмотренного материала видно, что главной особенностью митоза вообще является возникновение структур веретена деления, образующегося в связи с разнообразными по своему строению ЦОМТ.

Морфология митотической фигуры

Митотический аппарат особенно хорошо бывает выражен на стадии метафазы митоза. В метафазе в экваториальной плоскости клетки располагаются хромосомы, от которых в противоположных направлениях тянутся так называемые нити веретена, сходящиеся на двух разных полюсах митотической фигуры. Таким образом митотическое веретено - это совокупность хромосом, полюсов и волокон. Волокна веретена представляют собой одиночные микротрубочки или их пучки. Начинаются микротрубочки от полюсов веретена, и часть из них направляется к центромерам, где расположены кинетохоры хромосом (кинетохорные микротрубочки), часть проходит дальше по направлению к противоположному полюсу, однако до него не доходит. Они называются «межполюсные микротрубочки». От полюсов отходит группа радиальных микротрубочек, образуя вокруг них структуру, напоминающую «лучистое сияние» - это астральные микротрубочки.

По морфологии митотические фигуры делятся на астральный и анастральный тип.

Астральный тип веретена, или конвергентный, характеризуется тем, что его полюсы представлены небольшой зоной, к которой сходятся (конвергируют) микротрубочки. Обычно в полюсах астральных веретен располагаются центросомы, содержащие центриоли. Однако известны случаи бесцентриолярных астральных митозов (при мейозе некоторых беспозвоночных). Кроме того, отмечаются, расходящиеся от полюсов, радиальные микротрубочки, не входящие в состав веретена, но образующие звёздчатые зоны - цитастеры. Такой тип митотического деления напоминает гантель. Анастральный тип митотической фигуры не имеет на полюсах цитастеров. Полярные области веретена здесь широкие , их называют полярными шапочками, в их состав входят центриоли. В этом случае волокна веретена не отходят от одной точки, а расходятся широким фронтом (дивергируют) от всей зоны полярных шапочек. Этот тип веретена характерен для делящихся клеток высших растений, но может встречаться и у высших животных. В раннем эмбриогенезе млекопитающих при делении созревания ооцита и при I и II делении зиготы наблюдаются бесцентриолярные (дивергентные) митозы. Но уже в третьем клеточном делении и во всех последующих клетки делятся при участии астральных веретён, в полюсах которых всегда обнаруживаются центриоли. В целом же для всех форм митоза общими структурами остаются хромосомы с их кинетофорами, полярные тельца (центросомы) и волокна веретена.

Центромеры и кинетохоры

Центромеры могут иметь различную локализацию по длине хромосом. Голоцентрические центромеры встречаются в том случае, когда микротрубочки связаны по длине всей хромосомы (некоторые насекомые, нематоды, некоторые растения). Моноцентрические центромеры - когда микротрубочки связаны с хромосомами в одном участке. моноцентрические центромеры могут быть точечными (например, у некоторых почкующихся дрожжей), когда к кинетохору подходит всего лишь одна микротрубочка, и зональными, где к сложному кинетохору подходит пучок микротрубочек. Несмотря на разнообразие зон центромер, все они связаны со сложной структурой кинетохора, имеющего принципиальное сходство строения и функций у всех эукариот. Кинетохоры - специальные белковые структуры, большей частью располагающиеся в зонах центромер хромосом. Это сложные комплексы, состоящие из многих белков. морфологически они очень сходны, имеют одинаковое строение, начиная от диатомовых водорослей, кончая человеком. Представляют собой трёхслойные структуры: внутренний плотный слой, примыкающий к телу хромосомы, средний рыхлый слой и внешний плотный слой. От внешнего слоя отходят множество фибрилл, образуя так называемую фиброзную корону кинетохора. В общей форме кинетохоры имеют вид пластинок или дисков, лежащих в зоне первичной перетяжки хромосомы, в центромере. На каждую хромосому или хроматиду обычно приходится по одному кинетохору. До анафазы кинетохоры на каждой сестринской хроматиде располагаются , связываясь каждый со своим пучком микротрубочек. У растений кинетохор имеет вид не пластинок, а полусфер. Функциональная роль кинетохоров заключается в связывании между собой сестринских хроматид, в закреплении митотических микротрубочек, в регуляции разъединения хромосом и в собственно движении хромосом во время митоза при участии микротрубочек. В общем белковые структуры, кинетохоры удваиваются в S-периоде, параллельно удвоению хромосом. Но их белки присутствуют на хромосомах во всех периодах клеточного цикла.

ТКАНИ РАСТЕНИЙ

Образовательные ткани (меристемы)

Образовательные ткани в теле растений располагаются в разных местах, поэтому их делят на следующие группы (рис 0;1).

1. Верхушечные (апикальные) меристемы располагаются на верхушках, или апексах, осевых органов - стебля, корня. С помощью этих меристем вегетативные органы растений осуществляют свой рост в длину.

2. Латеральные меристемы характерны для осевых органов. Там они располагаются концентрически, в виде муфты.

3. Интеркалярные, или вставочные, меристемы происходят от верхушечных меристем. Это группы клеток, еще не способных размножаться, однако вставшие на путь дифференциации. Инициальных клеток среди них нет, но много специализированных.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.