Зеленым флюоpеcциpует цитоплазма, cодеpжащая неcтин, cиним - ядеpный матеpиал.
Корнем иерархии стволовых клеток является тотипотентная зигота. Первые несколько делений зиготы сохраняют тотипотентность и при потере целостности зародыша это может приводить к появлению монозиготных близнецов. К ветвям иерархии относятся плюрипотентные (омнипотентные) и мультипотентные (бластные) стволовые клетки. Листьями (конечными элементами) иерархии являются зрелые унипотентные клетки тканей организма.
Нишами стволовых клеток называются места в ткани, где постоянно залегают стволовые клетки, делящиеся по мере надобности для дальнейшей дифференциации.
Стволовые клетки размножаются путём деления, как и все остальные клетки. Отличие стволовых клеток состоит в том, что они могут делиться неограниченно, а зрелые клетки обычно имеют ограниченное количество циклов деления.
Когда происходит созревание стволовых клеток, то они проходят несколько стадий. В результате, в организме имеется ряд популяций стволовых клеток различной степени зрелости. В нормальном состоянии, чем более зрелой является клетка, тем меньше вероятность того, что она сможет превратиться в клетку другого типа. Но всё же это возможно благодаря феномену трансдифференцировки клеток (англ. Transdifferentiation).
ДНК во всех клетках одного организма (кроме половых), в том числе и стволовых, одинакова. Клетки различных органов и тканей, например, клетки кости и нервные клетки, различаются только тем, какие гены у них включены, а какие выключены, то есть регулированием экспрессии генов, например, путем метилирования ДНК. Фактически, с осознанием существования зрелых и незрелых клеток был обнаружен новый уровень управления клетками. То есть, геном у всех клеток идентичен, но режим работы, в котором он находится - различен.
В различных органах и тканях взрослого организма существуют частично созревшие стволовые клетки, готовые быстро дозреть и превратиться в клетки нужного типа. Они называются бластными клетками. Например, частично созревшие клетки мозга - это нейробласты, кости - остеобласты и так далее. Дифференцировку могут запускать как внутренние причины, так и внешние. Любая клетка реагирует на внешние раздражители, в том числе и на специальные сигналы цитокины. Например, есть сигнал (вещество), служащий признаком перенаселённости. Если клеток становится очень много, то этот сигнал сдерживает деление. В ответ на сигналы клетка может регулировать экспрессию генов.
Роль стволовых клеток становится понятной при рассмотрении развития организма человека, представленного на рисунке 3. Это развитие начинается с оплодотворения яйцеклетки и образования зиготы, которая дает начало целому организму. Оплодотворенная яйцеклетка тотипотентна - она обладает неограниченным потенциалом в том смысле, что ее одной достаточно для формирования и развития нормального плода при соответствующих условиях. В первые часы после оплодотворения она делится с образованием идентичных тотипотентных клеток, и любая из них, будучи имплантирована в матку женщины, способна дать начало развитию плода. Примерно через четверо суток после оплодотворения, когда проходит несколько циклов клеточного деления, тотипотентные клетки начинают специализироваться с образованием сферической структуры, называемой бластоцистой. У бластоцисты есть наружный слой и внутренняя полость, где образуется внутренняя клеточная масса. Из наружного слоя развивается плацента и другие поддерживающие структуры, необходимые для формирования плода, а из внутренней клеточной массы - практически все органы и ткани самого плода. Клетки внутренней клеточной массы плюрипотентны - их наличие является необходимым, но не достаточным условием формирования плода. Если их имплантировать в матку женщины, то беременность не наступит.
Плюрипотентные клетки подвергаются дальнейшей специализации с образованием стволовых клеток, которые дают начало еще более специализированным клеткам, обладающими специфическими функциями. Так, из кроветворных (гемопоэтических) стволовых клеток развиваются эритроциты, лейкоциты и тромбоциты, а из стволовых клеток кожи - различные типы клеток этой ткани. О стволовых клетках говорят, что они полипотентны. Полипотентные стволовые клетки присутствуют не только у эмбриона, но и в организме новорожденного и взрослого человека. Так, гемопоэтические стволовые клетки, находящиеся в основном в костном мозге, а также в небольшом количестве циркулирующие в крови, ответственны за постоянное образование новых клеток крови взамен разрушенных, и этот процесс продолжается всю жизнь [2].
3. Эмбриональные стволовые клетки
Эмбриональные стволовые клетки (ЭСК) образуются из внутренней клеточной массы на ранней стадии развития зародыша - бластоциста. Зародыш человека достигает стадии бластоциста на стадии 4-5 дней после оплодотворения, бластоцист человека состоит из 50-150 клеток.
Эмбриональные стволовые клетки являются плюрипотентными. Это означает, что они могут дифференцироваться во все три первичных зародышевых листка: эктодерму, энтодерму и мезодерму. Таким образом образуются более 220 видов клеток. Свойство плюрипотентности отличает эмбриональные стволовые клетки от полипотентных клеток, которые могут дать начало лишь ограниченному количеству видов клеток. В отсутствие стимулов к дифференциации in vitro, эмбриональные стволовые клетки могут поддерживать плюрипотентность в течение многих клеточных делений. Наличие плюрипотентных клеток у взрослого организма остается объектом научных дискуссий, хотя исследования показали, что существует возможность образования плюрипотентных клеток из фибробластов взрослого человека.
Ввиду пластичности и потенциально неограниченного потенциала самообновления, эмбриональные стволовые клетки имеют перспективы применения в регенеративной медицине и замещении поврежденных тканей. Однако в настоящий момент не существует никакого медицинского применения эмбриональных стволовых клеток. Стволовые клетки взрослых организмов и стволовые клетки спинного мозга используются для терапии различных заболеваний. Некоторые заболевания крови и иммунной системы (в том числе генетические) могут быть вылечены такими неэмбриональными стволовыми клетками. Разрабатываются методы лечения с помощью стволовых клеток таких патологий, как онкологические заболевания, юношеский диабет, синдром Паркинсона, слепота и нарушения работы спинного мозга
Существуют как этические, так и технические затруднения, связанные с трансплантацией гематопоэтических стволовых клеток. Эти проблемы связаны, в том числе, с гистосовместимостью. Такие проблемы могут быть разрешены при использовании собственных стволовых клеток или путем терапевтического клонирования.
Тотипотентность - способность образовывать любую из примерно 350 типов клеток организма (у млекопитающих).
Хоуминг - способность стволовых клеток, при введении их в организм, находить зону повреждения и фиксироваться там, исполняя утраченную функцию.
Факторы, которые определяют уникальность стволовых клеток, находятся не в ядре, а в цитоплазме. Это избыток мРНК всех 3 тысяч генов, которые отвечают за раннее развитие зародыша.
В настоящее время линии плюрипотентных клеток человека получают из двух источников с помощью методов, отработанных на животных моделях:
а) Плюрипотентные клетки выделяют непосредственно из внутренней клеточной массы эмбриона человека на стадии бластоцисты. Сам эмбриональный материал получали в больших количествах в клинических, а не исследовательских целях для осуществления экстракорпорального оплодотворения, всякий раз испрашивая разрешение на его использование у обоих доноров. Клетки внутренней клеточной массы культивировали и получали линию плюрипотентных клеток.
б) Другая группа исследователей выделяла плюрипотентные клетки из ткани плода. Разрешение на это давалось обоими супругами уже после того, как они сами приняли решение прервать беременность. Клетки отбирались из той области плода, которая должна была развиться в яичники или семенники.
Несмотря на то что плюрипотентные клетки в двух указанных случаях происходили из разных источников, полученные клеточные линии были идентичными.
Еще одним способом получения плюрипотентных клеток может стать метод, основанный на переносе в энуклеированную (лишенную ядра) яйцеклетку ядра соматической клетки. Соответствующие опыты уже проведены на животных. Сама яйцеклетка с новым ядром и ее непосредственные «потомки» способны при соответствующих условиях развиться в полноценный организм, то есть являются титопотентными. Из них формируется бластоциста, которая и служит источником плюрипотентных клеток.
Изолированные плюрипотентные клетки человека - очень ценный материал для исследователей и клиницистов. Эксперименты с их использованием могут помочь разобраться в сложнейших процессах развития человеческого организма, и прежде всего в том, что именно влияет на принятие клеткой решения о переходе от стадии роста и деления к стадии дифференцировки. Известно, что ключевым моментом здесь является «включение» и «выключение» специфических генов, но мы мало что знаем и о самих этих генах, и о том, какие события предшествуют их переключению. Разобравшись в функционировании клетки в норме, мы сумеем понять, какие сбои в ее работе приводят к фатальным для организма последствиям.
Выделение плюрипотентных клеток человека открывает новые возможности перед исследователями, занимающимися поисками новых лекарственных веществ и их тестированием. Разнообразные клеточные линии (например, линии раковых клеток) используются в этих целях уже сейчас, а культура плюрипотентных клеток позволяет проводить тестирование сразу на нескольких типах клеток. Это не заменяет тестирование на уровне целого организма, но значительно облегчает поиск новых лекарственных веществ.
Одно из самых впечатляющих применений плюрипотентных клеток человека - это так называемая «клеточная терапия». Многие заболевания человека обусловливаются нарушением функционирования клеток или целых органов, и сегодня для устранения дефекта в таких случаях используется метод трансплантации. К сожалению, нередко повреждения носят множественный характер, и заменить все затронутые ими органы не представляется возможным. Плюрипотентные клетки, стимулированные к дифференцировке с образованием строго специализированных клеток, могут служить возобновляемым источником не затронутых поражением клеток, замещающих выбывшие из строя дефектные клетки. Это открывает широкие возможности для лечения самых разных заболеваний человека, включая такие серьезные, как болезнь Паркинсона, болезнь Альцгеймера, сердечнососудистые заболевания, ревматоидный артрит, диабет и другие.
Несмотря на всю перспективность описанного подхода, пройдет еще немало времени, прежде чем его удастся применить в клинике. Во-первых, необходимо выяснить, какие события предшествуют переходу клетки в организме человека к стадии дифференцировки; только тогда мы сможем направленно изменять ход событий, чтобы получить из плюрипотентных клеток именно те, которые нужны для трансплантации. Во-вторых, прежде чем вводить культивированные клетки в организм человека, следует решить проблему иммунологического отторжения. Поскольку плюрипотентные клетки, взятые из бластоцисты или ткани плода, вряд ли будут идентичны клеткам реципиента, необходимо научиться модифицировать их для минимизации этого различия или создать банк тканей.
Страницы: 1, 2, 3, 4, 5