Круговорот азота
Атмосфера на ~ 79% состоит из азота. Азот - биогенный элемент, входит в состав аминокислот и белков в живых организмах. Биохимический цикл азота приведен на рис. 1.8 . Азот может стать доступным для живых организмов только в связанной форме, т. е. в результате азотфиксации. Фиксация азота (в порядке значимости)
1. Промышленная фиксация (см.рис 1.8 в Приложении5).
2. Сине-зеленые водоросли и бактерии.
3. Действие физических сил природы: молний, космического излучения
(N2 + 02 > NО > нитраты) .
Промышленная фиксация - это производство удобрений (КNO3, NаNО3, NН4NO3 и т.п.).
Самый богатый природный источник связанного азота - это бобовые: горох, клевер, соя, люцерна и т. д. На их корнях имеются клубеньки, в которых находятся колонии азотфиксирующих бактерий. Это симбиоз растений и бактерий: растения получают азот, бактерии -углеводы и другое питание. Распад органического вещества и нитрификация происходит с участием сапрофитов - бактерий. Они возвращают азот белков, содержащихся в мертвых растениях и животных, в общий круговорот в форме нитратов. Денитрификация производится особыми бактериями денитрификаторами, которые расщепляют нитраты и возвращают азот. Такие бактерии живут в почвах и водах с малым содержанием 02. Естественный круговорот азота происходит с очень малой скоростью, поэтому он сильно подвержен антропогенным воздействиям. В настоящее время равновесие по азоту в природе нарушено в результате человеческой деятельности: происходит накопление нитратов и других промежуточных продуктов нитрификации в окружающей среде.
Проблемы, связанные с нарушениями в круговороте азота.
Первая проблема связана с накоплением нитратов. Это соединения азота, соли азотной кислоты с радикалом NO3-, входят в состав удобрений, применяются как пищевые добавки. Сами по себе нитраты относительно не токсичны. Но бактерии, обитающие в организме человека, могут превращать их в токсичные нитриты. Нитриты реагируют в желудке с аминами, образуя весьма канцерогенные нитрозамины. (Нитрозамины - самые сильные канцерогены из известных). Нитрит натрия (NaNO2) в смеси с поваренной солью используется для посола мяса и рыбы. В ФРГ 95% мясных изделий подсаливается этой смесью.
Нитриты опасны:
1). Образуются нитрозамины - канцерогены.
2). У грудных и маленьких детей развивается цианоз или синюшность.
Источниками нитрозаминов (Н) являются: машинные масла (было обнаруженодо 3% Н), табачный дым ~ 1 мкг и некоторые косметические средства.
Второй проблемой является проблема оксидов азота. Оксиды азота образуются при всех процессах горения в результате соединения N и О. При горении образуется сначала NO, который затем окисляется до N02, который более токсичен и вреден для живой природы. Из N02 , образуются кислотные осадки в условиях влажного воздуха (кислотные туманы, кислотная роса, кислотные дожди)
N02 + Н20 > HNO3
ПДК по N02 равен 0,08 мг/м3 при длительном воздействии. Признаки хронического отравления N02: головные боли, бессоница, изъязвление слизистых оболочек.
Фотохимический смог образуется в условиях большого количествах выхлопных газов ( около 500 различных углеводородов ), оксидов азота, интенсивного солнечного излучения. Продуктами происходящих химических реакций являются множество опасных веществ - фотооксиданты, озон, ПАН (пироксиацетилнитрат, являющийся смертельно опасным веществом).
Круговорот серы. Проблема кислотных осадков
Круговорот серы в природе сложен и до конца не ясен. Сера распространена в природе в виде множества неорганических соединений. (Известно более 200 серосодержащих минералов). Сера участвует также и в биотическом круговороте: она входит в состав некоторых аминокислот, а также участвует в биохимических процессах образования белков.
В атмосферном воздухе сера присутствуете основном, в виде трех соединений - газообразных оксида серы (1У), сероводорода и аэрозолей сульфатов. Природным источником серы в атмосферном воздухе является сероводород. Среднее время жизни Н2S в атмосфере ~ 2 суток. Он быстро окисляется до SO2. Антропогенный источник SO2 - сжигание топлива, т. к. ископаемое топливо содержит значительное количество серы почти до 4%. В атмосферном воздухе SO2 приводит к образованию аэрозолей и "кислых" дождей. Время жизни SO2 в атмосфере ~ 4 сут.
Существует и природный загрязнитель атмосферного воздуха соединениями серы (SO2, Н2S, сульфаты) - это вулканическая деятельность. При извержениях вулканов эти соединения попадают в нижние слои атмосферы - тропосферу.
Диоксид серы - газ, вредный для здоровья людей, страдающих заболеваниями дыхательных путей. Доказана прямая зависимость частоты заболеваний бронхитом от концентрации SO2 в воздухе:
у = 14,5х - 1,3
где у - процент заболевших бронхитом;
х - концентрация SO2 в воздухе, мг/м3. Примеры: При х = 1,0 мг/м3 число заболевших бронхитом составит 13,2%, при х=5 мг/м3 - у = 71,2%, при х=6,8 мг/м3 - все население заболеет бронхитом. Эти прогнозыподтверждаются исследованиями, проведенными в Европе. В атмосферном воздухе SO2 окисляется до SO3. Газообразный SO3 растворяется в каплях влаги с образованием серной кислоты
SO3(г)+ Н2O(ж) --> H2SO4(ж)
Это приводит к выпадению кислотных осадков, что губительно влияет на живые организмы в природе: в водоемах гибнут рыбы и другие организмы. Кислотные осадки изменяют структуру и состав почв, приводят к гибели растений. Особенно страдают хвойные деревья. И, наконец, кислотные осадки приводят к разрушению и творения человеческих рук. Под влиянием кислоты разрушаются здания, архитектурные и другие памятники, под действием кислотных дождей ускоряется коррозия металлических конструкций.
Таким образом, можно сделать вывод, что биохимическими циклами и круговоротом в целом обеспечиваются важнейшие функции живого вещества в биосфере.
Если же рассматривать биосферу в целом, то в ней можно выделить: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре (в геологическом круговороте).
Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.
Биогеохимический круговорот в биосфере, помимо кислорода, углерода и азота, совершают и многие другие элементы, входящие в состав органических веществ, -- сера, фосфор, железо и др.
3. Продукционная и регуляторная функции биосферы как основа жизнеобеспечения общества
В.И.Вернадский писал: « Живой организм и живое вещество являются закономерной функцией биосферы... в биосфере могут существовать не всякие организмы, а только строго определенные ее структурой».Поэтому морфологические, физиологические свойства организмов должны рассматриваться неразрывно с его геохимическими функциями.
Биосфера - это открытая целостная система, т.е. такая которая, с одной стороны, связана энергоинформационным и вещественным обменом с Космосом, с другой, -- не сводима к простой сумме составляющих ее частей. Целостность биосферы выполняет регуляторную функцию по отношению к объектам и процессам внутри биосферы.
Величайшая заслуга В. И. Вернадского заключается в определении важнейшей роли живых организмов в формировании и поддержании основных физико-химических свойств оболочек Земли.
Он первым сформулировал понятие биосферы не просто как пространства, заселенного живыми организмами, а как целостной функциональной системы, на уровне которой реализуется неразрывная связь геологических и биологических процессов. Центральная роль в этой системе принадлежит живым организмам, обладающим высокой химической активностью, подвижностью и способностью к самовоспроизведению.
Подчеркивая глобальное значение жизни, В. И. Вернадский рассматривал ее в масштабах целостной биосферы. В его геохимической концепции выделена совокупность живых организмов («живого вещества») как целое. При таком подходе ученого интересовали в первую очередь химические свойства живых организмов, поскольку именно они определяют характер круговорота веществ. «Форма организмов в миграциях элементов земной коры почти совершенно стушевывается,-- писал он,-- но вещество организмов, движение его молекул, его энергия проявляются во всех наблюдаемых явлениях... Необходимо выражать совокупность организмов исключительно с точки зрения их веса, их химического состава, их энергии, их объема и характера отвечающего им пространства». При этом В. И. Вернадский подчеркивал, что биосфера как целостная система обладает определенной организованностью, механизмами самоподдержания: «Живое вещество... становится регулятором действенной энергии биосферы».
Однако эта регуляторная функция чувствительна к конкретным формам живых организмов и механизмам их взаимодействия. Инициированное учением В. И. Вернадского развитие биологии в направлении познания роли жизни в биосферных процессах характеризовалось стремлением раскрыть конкретные механизмы биогенного круговорота вещества как устойчивого глобального явления. Наиболее плодотворной оказалась концепция В. Н. Сукачева о биогеоценозах -- биологических системах, на уровне которых реализуются процессы этого круговорота. По современному представлению, устойчивое поддержание биогенного круговорота основывается на трех генеральных свойствах жизни: ее разнокачественное и разнообразии ее системности, гомеостазировании функций на разных уровнях организации биологических систем.
Физиологическая разнокачественность живых организмов -- фундаментальное условие устойчивого существования жизни как планетарного явления. Форма существования жизни -- вид. С позиций геохимической роли вида его наиболее существенным свойством является неповторимая специфичность обмена веществ. Многообразием видов определяется максимальная эффективность использования внешних источников и форм энергии для синтеза органического вещества и его трансформаций на различных этапах биогенного круговорота вплоть до полной минерализации и повторного вовлечения в цикл (схема). Поддержание круговорота в биогеоценозах основано на функциональной разнокачественности входящих в них видов. В простейшем случае комплементарный набор жизненных форм, необходимый для бесперебойного функционирования биогеоценоза, представлен продуцентами, консументами и редуцентами. Разнообразие видов в каждой из этих экологических категорий обусловливает параллельность и дублирование трофических цепей в конкретных биогеоценозах, что гарантирует устойчивость системы при всегда возможных нарушениях ее состава, депрессиях численности отдельных видов и т. п.
Такое свойство жизни, как системность, способствует бесперебойному осуществлению геохимических функций живого вещества в биосфере. Исходным звеном в цепи круговорота веществ служит отдельный организм. Только на уровне организма реализуется обмен веществ с окружающей средой. Эта функция обеспечивается сложным набором морфофизиологических механизмов, согласованность работы которых поддерживается системой регуляций, определяющих целостность и устойчивость организма как биологической системы. Но отдельные организмы смертны. Устойчивое участие видов в биогенном круговороте осуществляется на уровне популяций -- естественных группировок особей одного вида, вместе обитающих и связанных общностью генофонда и закономерными функциональными взаимодействиями. Популяция в современной биологии рассматривается как биологическая система надорганизменного уровня, характеризующаяся специфической структурой и функцией. При этом функция популяции неоднозначна. С одной стороны, она заключается в сохранении и воспроизведении вида в конкретных условиях. Благодаря эффективному размножению популяция как система оказывается практически бессмертной, хотя происходит непрерывная смена составляющих ее особей (организмов). С другой стороны, популяция входит в состав биогеоценоза как одна из его субсистем. Биогеоценотическая функция популяции -- участие в биогенном круговороте веществ -- определяется видоспецифическим типом обмена. Популяция представляет вид в биогеоценозах; все межвидовые взаимоотношения, обеспечивающие устойчивое существование и функционирование биогеоценозов, происходят на уровне видовых популяций.
Страницы: 1, 2, 3, 4