Рефераты. Теория относительности

p align="left">Специальный тип гравитационного линзирования называется кольцом или дугой Эйнштейна. Кольцо Эйнштейна возникает, когда наблюдаемый объект находится непосредственно позади другого объекта со сферически-симметричным полем тяготения. В этом случае свет от более отдалённого объекта наблюдается как кольцо вокруг более близкого объекта. Если удалённый объект будет немного смещён в одну сторону и/или поле тяготения не сферически-симметричное, то вместо этого появятся частичные кольца, называемые дугами.

Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу) и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света от звёзд -- МАСНО, EROS (англ.) и другие.

3.3 Чёрные дыры

Чёрная дыра -- область, ограниченная так называемым горизонтом событий, которую не может покинуть ни материя, ни информация. Предполагается, что такие области могут образовываться, в частности, как результат коллапса массивных звёзд. Поскольку материя может попадать в чёрную дыру (например, из межзвёздной среды), но не может её покидать, масса чёрной дыры со временем может только возрастать.

Стивен Хокинг, тем не менее, показал, что чёрные дыры могут терять массу за счёт излучения, названного излучением Хокинга. Излучение Хокинга представляет собой квантовый эффект, который не нарушает классическую ОТО.

Известно много кандидатов в чёрные дыры, в частности супермассивный объект, связанный с радиоисточником Стрелец A* в центре нашей Галактики. Подавляющее большинство учёных убеждены, что наблюдаемые астрономические явления, связанные с этим и другими подобными объектами, надёжно подтверждают существование чёрных дыр, однако существуют и другие объяснения: например, вместо чёрных дыр предлагаются бозонные звёзды и другие экзотические объекты.

3.4 Орбитальные эффекты

ОТО корректирует предсказания ньютоновской теории небесной механики относительно динамики гравитационно связанных систем: Солнечная система, двойные звёзды и т. д.

Первый эффект ОТО заключался в том, что перигелии всех планетных орбит будут прецессировать, поскольку гравитационный потенциал Ньютона будет иметь малую релятивистскую добавку, приводящую к формированию незамкнутых орбит. Это предсказание было первым подтверждением ОТО, поскольку величина прецессии, выведенная Эйнштейном в 1916 году, полностью совпала с аномальной прецессией перигелия Меркурия. Таким образом была решена известная в то время проблема небесной механики.

Позже релятивистская прецессия перигелия наблюдалась также у Венеры, Земли, астероида Икар и как более сильный эффект в системах двойных пульсаров. За открытие и исследования первого двойного пульсара PSR B1913+16 в 1974 году Р. Халс и Д. Тейлор получили Нобелевскую премию в 1993 году.

Другой эффект -- изменение орбиты, связанное с гравитационным излучением двойной и более кратной системы тел. Этот эффект наблюдается в системах с близко расположенными звёздами и заключается в уменьшении периода обращения. Он играет важную роль в эволюции близких двойных и кратных звёзд. Эффект впервые наблюдался в вышеупомянутой системе PSR B1913+16 и с точностью до 0,2 % совпал с предсказаниями ОТО.

Ещё один эффект -- геодезическая прецессия. Она представляет собой прецессию полюсов вращающегося объекта в силу эффектов параллельного перенесения в искривлённом пространстве-времени. Данный эффект отсутствует в ньютоновской теории тяготения. Предсказание геодезической прецессии было проверено в эксперименте с зондом НАСА «Грэвити Проуб Би» (Gravity Probe B). Руководитель исследований данных, полученных зондом, Фрэнсис Эверитт на пленарном заседании Американского физического общества 14 апреля 2007 года заявил о том, что анализ данных гироскопов позволил подтвердить предсказанную Эйнштейном геодезическую прецессию с точностью, превосходящей 1 %.

3.5 Увлечение инерциальных систем отсчёта

Увлечение инерциальных систем отсчёта вращающимся телом заключается в том, что вращающийся массивный объект «тянет» пространство-время в направлении своего вращения: удалённый наблюдатель в покое относительно центра масс вращающегося тела обнаружит, что самыми быстрыми часами (то есть покоящимися относительно локально-инерциальной системы отсчёта) на фиксированном расстоянии от объекта являются часы, имеющие компоненту движения вокруг вращающегося объекта в направлении вращения, а не те, которые находятся в покое относительно наблюдателя, как это происходит для невращающегося массивного объекта. Точно так же удалённым наблюдателем будет установлено, что свет двигается быстрее в направлении вращения объекта, чем против его вращения. Увлечение инерциальных систем отсчёта также вызовет изменение ориентации гироскопа во времени. Для космического корабля на полярной орбите направление этого эффекта перпендикулярно геодезической прецессии, упомянутой выше.

Поскольку эффект увлечения инерциальных систем отсчёта в 170 раз слабее эффекта геодезической прецессии, стэнфордские учёные пока по-прежнему извлекают его «отпечатки» из информации, полученной зондом «Грэвити Проуб Би» (Gravity Probe B).

3.6 Другие предсказания

Эквивалентность инерционной и гравитационной массы: следствие того, что свободное падение -- движение по инерции. Принцип эквивалентности: даже самогравитирующий объект отзовётся на внешнее поле тяготения в той же мере, что и тестовая частица.

Гравитационное излучение: вращение двойных звёзд и планет, а также процессы слияния нейтронных звёзд и/или чёрных дыр, как ожидается, должны сопровождаться излучением гравитационых волн.

Слияние двойных пульсаров может создавать гравитационные волны, достаточно сильные, чтобы наблюдаться на Земле. На 2009 год существуют (или будут в ближайшее время построены) несколько гравитационных телескопов для наблюдения подобных волн, однако пока имеются лишь косвенные доказательства существования гравитационного излучения в виде измерений темпа потери энергии вращения тесными двойными звёздами.

Гравитоны. Согласно квантовой механике, гравитационное излучение должно быть составлено из квантов, названных гравитонами. ОТО предсказывает, что они будут безмассовыми частицами со спином, равным 2. Обнаружение отдельных гравитонов в экспериментах связано со значительными проблемами, так что существование квантов гравитационного поля до сих пор (2009 год) не показано.

4. Космология

Хотя общая теория относительности была создана как теория тяготения, скоро стало ясно, что эту теорию можно использовать для моделирования Вселенной как целого, и так появилась физическая космология. Центральным пунктом для физической космологии является метрика Фридмана -- Леметра -- Робертсона -- Уокера, которая является космологическим решением уравнений Эйнштейна. Это решение предсказывает, что Вселенная должна быть динамической: она должна расширяться, сжиматься или совершать постоянные колебания.

Эйнштейн сначала не мог примириться с идеей динамической Вселенной, хотя она явно следовала из уравнений Эйнштейна без космологического члена. Поэтому в попытке переформулировать ОТО так, чтобы решения описывали статичную Вселенную, Эйнштейн добавил космологическую постоянную к полевым уравнениям (см. выше). Однако получившаяся статическая вселенная была нестабильна. Позднее в 1929 году Эдвин Хаббл показал, что красное смещение света от отдалённых галактик указывает, что они удаляются от нашей собственной галактики со скоростью, которая пропорциональна их расстоянию от нас. Это продемонстрировало, что вселенная действительно не статична и расширяется. Открытие Хаббла показало несостоятельность воззрений Эйнштейна и использования им космологической постоянной. Теория нестационарной Вселенной (включая учёт космологического члена) была создана, впрочем, ещё до открытия закона Хаббла усилиями Фридмана, Леметра и ДеСиттера.

Уравнения, описывающие расширение Вселенной, показывают, что она становится сингулярной, если вернуться назад во времени достаточно далеко. Это событие называют Большим Взрывом. В 1948 году Дж. Гамов издал статью, описывающую процессы в ранней Вселенной в предположении её высокой температуры и предсказывающую существование космического микроволнового фонового излучения, происходящего от горячей плазмы Большого Взрыва; в 1949 году Р. Алфер и Герман провели более подробные вычисления. В 1965 году А. Пензиас и Р. Вилсон впервые идентифицировали реликтовое излучение, подтвердив таким образом теорию Большого Взрыва и горячей ранней Вселенной.

5. Проблемы ОТО

5.1 Проблема энергии

Так как энергия, с точки зрения математической физики, представляет собой величину, сохраняющуюся из-за однородности времени[53], а в общей теории относительности, в отличие от специальной, вообще говоря, время неоднородно[~ 4], то закон сохранения энергии может быть выражен в ОТО только локально, то есть в ОТО не существует такой величины, эквивалентной энергии в СТО, чтобы интеграл от неё по пространству сохранялся при движении по времени. Локальный же закон сохранения энергии-импульса в ОТО существует и является следствием уравнений Эйнштейна:

где точка с запятой обозначает взятие ковариантной производной. Переход от него к глобальному закону невозможен, потому что так интегрировать тензорные поля, кроме скалярных, в римановом пространстве, чтобы получать тензорные (инвариантные) результаты, вообще говоря, математически невозможно.

Многие физики считают это существенным недостатком ОТО. С другой стороны, очевидно, что если соблюдать последовательность до конца, в полную энергию, кроме энергии материи, необходимо включать также и энергию самого гравитационного поля. А последняя не может быть хорошо определена (как тензор), что является ещё одним аспектом проблемы. Различными авторами вводятся так называемые псевдотензоры энергии-импульса гравитационного поля, которые обладают некими «правильными» свойствами, но одно их многообразие показывает, что удовлетворительного решения задача не имеет. В общем случае проблема энергии и импульса может считаться решённой только для островных систем, то есть таких распределений массы, которые ограничены в пространстве, и пространство-время которых на пространственной бесконечности переходит в пространство Минковского. Тогда, выделяя группу асимптотической симметрии пространства-времени (группу Бонди -- Сакса), можно определить 4-векторную величину энергии-импульса системы, правильно ведущую себя относительно преобразований Лоренца на бесконечности.

Существует необщепринятая точка зрения, восходящая к Лоренцу и Леви-Чивита, которая определяет тензор энергии-импульса гравитационного поля как тензор Эйнштейна с точностью до постоянного множителя. Тогда уравнения Эйнштейна утверждают, что энергия-импульс гравитационного поля в любом объёме точно уравновешивает энергию-импульс материи в этом объёме, так что полная их сумма всегда тождественно равна нулю[55].

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.