Рефераты. Транспортные системы растений

p align="left">Транспирация

Листья, находясь на воздухе, теряют влагу путем испарения, за исключением тех периодов, когда воздух насыщен водяными парами. Солнечное тепло вызывает испарение воды с поверхности клеток мезофилла, и образующийся водяной пар диффундирует из листа через устьица. Такого рода потеря воды, называемая тринспирацией, может иметь место во всех органах растения, выставленных на воздух, однако в основном она осуществляется листьями. В ночное время транспирация очень незначительна, так как устьица обычно закрыты и испарение воды с поверхности клеток мезофилла замедлено вследствие более низкой температуры. Устьица часто бывают также закрыты во второй половине жаркого солнечного дня. Это значительно уменьшает транспирацию и позволяет растению сберегать воду. При достаточном снабжении растения водой устьица остаются открытыми и растения за счет транспирации выделяют поразительное количество влаги. В процессе фотосинтеза используется лишь незначительная часть (1-2%) поглощенной корнями воды. Остальная влага проходит через устьица в виде водяного пара в процессе транспирации. Если же растение получает от корней недостаточно воды, то замыкающие клетки устьиц теряют тургор и устьица закрываются, сохраняя воду.

Многочисленные мелкие отверстия устьиц служат чрезвычайно эффективным путем для диффузии водяного пара, кислорода и СО2. Хотя общая площадь этих пор составляет всего лишь 1-3% всей поверхности листовой пластинки, интенсивность диффузии через устьица только на 25-50% ниже, чем через открытую поверхность, равную поверхности листа. На солнце растение за 1 ч транспирирует в среднем около 50 см3 воды на 1 м2 листовой поверхности. Растение кукурузы потребляет в среднем более 200 л воды в течение вегетационного периода; это же количество воды дерево средних размеров транспирирует всего за 1 день. Количество транспирируемой воды сильно варьирует у разных растений; подсчитано, например, что 1 га кукурузы транспирирует 3 500 000 л воды за вегетационный период, а 1 га зрелого кленового леса - примерно вдвое больше, тогда как кактусы в Аризонской пустыне расходуют не более 2750 л воды на 1 га в течение целого года. Количество воды, испаряемое листьями деревьев в лесу, в значительной мере зависит также от осадков, влажности и температуры в данной области.

Транспирация облегчает передвижение воды вверх по стеблю, способствует концентрированию в листьях разбавленных растворов минеральных солей, поглощаемых корнями и необходимых для синтеза новых клеточных компонентов, а также вызывает охлаждение листьев подобно тому, как это происходит у животных при испарении пота. Хотя лист поглощает около 75% падающего на него солнечного света, только около 3% поглощенного света используется в процессе фотосинтеза. Остальная часть световой энергии превращается в тепловую и должна быть удалена во избежание гибели тканей листа. Часть этого тепла затрачивается на испарение воды (на превращение 1 л воды в водяной пар расходуется 540 ккал), а часть удаляется путем излучения и конвекции.

В результате испарения воды с поверхности клеток мейофилла концентрация растворенных в клеточном соке веществ возрастает и клетки становятся слегка гипертоничными; в них начинает поступать вода из соседних клеток с большим содержанием воды, а эти последние в свою очередь получают воду из трахеид и сосудов листовых жилок. Таким образом, при транспирации вода за счет чисто физического процесса осмоса проникает из сосудов ксилемы жилок через промежуточные клетки в клетки мезофилла, ближайшие к заполненным воздухом межклеточным пространствам листа, где и происходит ее испарение. Следовательно, вода непрерывно поступает из почвы в проводящую систему корня и поднимается по стеблю и черешку к жилкам листовой пластинки.

Передвижение воды

Еще много лет назад было экспериментально показано, что в стебле вода и соли, поглощаемые корнями, поднимаются главным образом по трахеидам и сосудам ксилемы, а сахара и другие органические вещества движутся в ос-ном по ситовидным трубкам флоэмы. Если сделать по всей окружности стебля надрез, пересекающий флоэму и камбий, но не затрагивающий ксилему, листья долго будут сохранять тургор и оставаться в хорошем состоянии; следовательно, вода поступает в них через ксилему, поскольку флоэма полностью перерезана. Применяя специальный метод, можно перерезать ксилему, сохранив флоэму относительно неповрежденной; в этом случае листья почти тотчас же завядают и отмирают, т.е. и эти результаты свидетельствуют о том, что вода поступает в листья главным образом по ксилеме. Хотя путь переноса воды давно известен, механизм этого процесса все еще остается не вполне ясным. Любая теория, чтобы считаться приемлемой, должна объяснять высокую скорость подачи воды, достигающую у некоторых растений 75-100 мл в 1 мин, а также тот факт, что вода поднимается до самых верхушек таких деревьев, как дугласова пихта и секвойя, достигающих высоты до 125 м. Чтобы поддерживать такой столб воды, необходимо давление более 12 атм; кроме того, требуется дополнительное давление, чтобы поднимать воду, преодолевая трение в узких каналах. По некоторым оценкам, давление, необходимое для подъема воды до вершины высокого дерева, может достигать 30 атм. Оно могло бы либо создаваться у основания растения и толкать воду вверх, либо создаваться у его верхушки и подтягивать роду; возможно и совместное действие обеих этих сил.

Корневое давление. Срезав стебель у хорошо политого растения томата, можно видеть, как из пенька некоторое время будет вытекать сок. Если прикрепить к пеньку стеклянную трубку и достаточно плотно обвязать место соединения, то сок может подняться в трубке на высоту 1 м или даже выше. Это говорит о том, что на границе корня и стебля существует положительное давление, называемое корневым давлением и создаваемое силами, действующими в корне. При обилии влаги в почве и высокой влажности воздуха, сводящей к минимуму потери воды за счет испарения с листьев, вода может под давлением выходить из концов листовых жилок, образуя капельки по краям листа (рис. 331). Это явление, называемое гуттацией, также свидетельствует о том, что при определенных условиях сок ксилемы может находиться под давлением, создаваемым корнями.

Сок, находящийся в корнях, гипертоничен по отношению к почвенном раствору; возможно, что этим, по крайней мере отчасти, и обусловлено корневое давление. Передвижение воды из почвы через эпидермис, кору, эндодерму и перицикл корня в его ксилему и далее вверх по ксилеме в стебель и листья происходит «вниз» по градиенту концентрации и осуществляется - по крайней мере частично - путем простой диффузии. Если корни убить или лишить кислорода, корневое давление упадет до нуля; следовательно, это давление зависит от какого-то активного процесса, требующего затраты энергии. Многие физиологи растений пришли к выводу, что клетки корневой эндодермы активно секретируют воду внутрь, в сторону центрального цилиндра, и что именно этим в значительной части обусловлено корневое давление.

При первых измерениях корневого давления были получены низкие величины, однако позже, когда были разработаны методы, позволявшие производить перерезку стебля и «герметически» присоединять к нему прибор, не повреждая ткани, было показано, что корневое давление может достигать 6 - 10 атм и более даже у томата, в опытах с которым вода поднимается в трубке менее чем на 1 м.

Весной, когда еще нет листьев, единственной силой, заставляющей сок подниматься по стеблю, может быть, вероятно, корневое давление. Попытки измерить корневое давление у хвойных не привели к успеху; возможно, что у этих растений оно вообще не возникает. Если бы корневое давление было у них главной силой, вызывающей поднятие сока, то следовало бы ожидать, что из проколотого сосуда ксилемы сок будет вытекать под давлением; однако после прокола такого сосуда, напротив, слышно шипение входящего внутрь воздуха. Возможно, что у некоторых растений при определенных условиях корневое давление действительно участвует в поднятии сока вверх по стеблю, но - вряд ли его можно считать главным фактором, действующим у большинства растений большую часть времени.

Транспирация и теория сцепления. Другая сила, которая могла бы заставить воду подниматься по стеблю, - это «поднятие» сверху, а не подталкивание снизу. В листьях вода расходуется в результате транспирации и в процессе фотосинтеза, который, кроме того, приводит к образованию осмотически активных веществ; эти процессы поддерживают гипертоничность содержимого клеток листа по отношению к соку, находящемуся в жилках. Клетки листьев непрерывно оттягивают воду из верхних участков ксилемы листьев и стебля, в результате чего столб жидкости в каждом проводящем сосуде поднимается. Наличие этой присасывающей силы можно продемонстрировать, соединив срезанный побег водонепроницаемым материалом с концом стеклянной трубки, другой конец которой погружен в сосуд с водой (рис. 332); вводя в трубку пузырек воздуха, можно судить по его перемещению о скорости движения воды.

Водяной столб в сосудах ксилемы, испытывая присасывающее давление сверху, находится в несколько растянутом состоянии; однако между молекулами воды, соединенными друг с другом водородными связями, существует сильное взаимное сцепление, и поэтому тонкие водяные тяжи в сосудах ксилемы проявляют большую прочность на разрыв. Таким образом, в верхней части водяного столба создается (главным образом в результате транспирации) натяжение, которое благодаря сцеплению молекул воды передается по всей длине стебля и корней и приводит к поднятию всего водяного столба. Мысль о том, что вода поднимается в растениях под действием присасывающей силы, возникающей в результате транспирации, впервые высказал Стивен Хейлс еще в начале XVIII века. Представление о роли сцепления молекул воды в ее поднятии по ксилеме было сформулировано в 1894 году Диксоном и Джоли, которые предсказывали, что столб воды должен обладать большой прочностью на разрыв. В ряде экспериментов действительно были получены величины, значительно превышающие те 30 атм, которые необходимы для поднятия воды на вершину секвойи. Если взять пористую керамическую трубку, налить в нее воды и погрузить нижний конец в ртуть, то в результате испарения воды ртуть может подняться вверх до 100 см и более - значительно выше, чем она поднялась бы под действием барометрического давления (рис. 333). Для успешной демонстрации этого явления воду следует сначала прокипятить, чтобы удалить из нее растворенные газы, из которых при растяжении столба воды могли бы образоваться пузырьки.

Исходя из теории сцепления следует ожидать, что в период интенсивной транспирации диаметр ствола дерева будет уменьшаться. Если столб/'воды в ксилеме испытывает растяжение, на стенки каждого из проводящих сосудов должна действовать сила, направленная внутрь. Совместного действия таких сил на все каналы активной зоны древесины было бы достаточно, чтобы вызвать заметное сжатие ствола во время активной транспирации. Подобный эффект был действительно обнаружен: толщина ствола сосны величественной (Pinus radiata) подвержена суточным колебаниям с минимумом вскоре после полудня, когда транспирация достигает максимума.

Гипотезу Диксона и Джоли подтверждают также эксперименты, в которых изучалось поглощение воды тропическими лианами. Некоторые из этих лиан поднимаются на стволы. деревьев до высоты 50 м и более. Если перерезать стебель лианы около основания и опустить его в ведро с водой, растение начинает интенсивно поглощать воду. Быстрое поглощение воды наблюдается и в том случае, если заменить ведро, герметически закрытым сосудом, хотя в сосуде при этом создается вакуум. В настоящее время теория сцепления пользуется широким признанием, так как позволяет объяснить поднятие воды у большинства растений почти при любых условиях. Неясным остается вопрос о механизме первоначального образования столба воды.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.