Главная:
Рефераты
На главную
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Генетика
Государственно-правовые
Экономика туризма
Военное дело
Психология
Компьютерные сети интернет
Музыка
Москвоведение краеведение
История
Зоология
Геология
Ботаника и сельское хоз-во
Биржевое дело
Безопасность жизнедеятельности
Астрономия
Архитектура
Педагогика
Кулинария и продукты питания
История и исторические личности
Геология гидрология и геодезия
География и экономическая география
Биология и естествознание
Банковское биржевое дело и страхование
Карта сайта
Рефераты. Влияние жизни на геологические процессы на Земле
Влияние жизни на геологические процессы на Земле
3
Содержание
1. Состав вещества биосферы 3
2. Особенности основных биосферных циклов 7
3. Биосферный цикл углерода 8
4. Биосферный цикл азота 8
5. Биосферный цикл фосфора 9
6. Биохимические функции живого вещества 11
7. Биогенная миграция атомов и биогеохимические принципы 12
8. В.И. Вернадский о переходе биосферы в ноосферу 15
Список литературы 19
1. Состав вещества биосферы
Если говорить о биосфере в целом, то биогеохимические циклы можно разделить на два основных типа: круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и осадочный цикл с резервным фондом в земной коре.Разделение биогеохимических циклов на круговороты газообразных веществ и осадочные циклы основано на том, что некоторые круговороты, например те, в которых участвуют углерод, азот и кислород, благодаря наличию крупных атмосферных или океанических (или же и тех и других) фондов довольно быстро компенсируют различные нарушения. Например, избыток СО2, накопившийся в каком-нибудь месте в связи с усиленным окислением или горением, обычно быстро рассеивается атмосферными потоками. Кроме того, усиленное образование углекислоты компенсируется ее потреблением растениями и превращением в карбонаты - в морях. Поэтому, циклы газообразных веществ с их громадными атмосферными фондами можно считать в глобальном масштабе хорошо «забуференными», так как их способность возвращаться к исходному состоянию велика.Самоконтроль циклов с резервным фондом в литосфере затруднен - они легко нарушаются в результате местных флуктуаций, что связано с малой подвижностью резервного фонда. Явление «забуференности» в этом случае не выражено.Биосфера не только сфера жизни. Это видно из состава вещества биосферы, состоящего из глубоко разнородных геологически не случайных частей. Оно представлено совокупностью живых организмов, живого вещества, рассеянного в мириадах особей, непрерывно умирающих и рождающихся, обладающих колоссальной действенной энергией и являющихся могучей геологической силой, нигде на планете больше не существующей, связанной с другим веществом биосферы только биогенной миграцией атомов. Концентрация живым веществом определённых химических элементов в биосфере есть, по-видимому, её господствующий биогенный геологический процесс.Также мы имеем вещества, образуемые процессами, в которых живое вещество не участвует: косное вещество, твёрдое, жидкое и газообразное. Из них только газообразное и жидкое (и дисперсное твёрдое) являются на поверхности биосферы носителями свободной энергии.v Биокосное вещество, - которое создаётся одновременно живыми организмами и косными процессами, представляя динамические равновесные системы тех и других (вода, нефть, почва и т. д.). Организмы в их образовании играют ведущую роль. Эти биокосные организованные массы являются сложными динамическими равновесными системами, в которых резко проявляется геохимическая энергия живого вещества - биогеохимическая энергия.v Вещество, находящееся в радиоактивном распаде. Это вещество в такой форме (дисперсно-рассеянное) является одной из самых мощных сил, меняющей всю энергию биосферы.v Вещество космического происхождения, атомы, молекулы из электромагнитного потока Солнца, исток отдельных атомов и молекул, приходящих из космического пространства.Во всякой экосистеме можно выделить следующие компоненты:Неорганические вещества: углерод, азот, углекислый газ, вода и т. д.Органические соединения: белки, углеводы, липиды, гуминовые вещества и т.д.Факторы, связывающие биотическую и абиотическую части экосистемы; климатический режим, температура и другие физические факторы;Продуценты: автотрофные организмы, главным образом зеленые растения, которые способны создавать пищу из простых неорганических веществ;Консументы: гетеротрофные организмы, главным образом животные, которые поедают другие организмы или частицы органического вещества;Редуценты (деструкторы, декомпозиторы): гетеротрофные организмы, преимущественно бактерии и грибы, которые расщепляют сложные соединения до простых, пригодных для использования продуцентами.Первые три группы - неживые компоненты, а остальные составляют живой вес (биомассу). Расположение трех последних компонентов относительно потока поступающей энергии представляет собой структуру экосистемы.1. Продуценты улавливают солнечную энергию и переводят ее в энергию химических связей.2. Консументы, поедая продуцентов, разрывают эти связи. Высвобожденная энергия используется консументами для построения собственного тела.3. Наконец, редуценты рвут химические связи разлагающегося органического вещества и строят свое тело. В результате вся энергия, запасенная продуцентами, оказывается использованной.Органические вещества разлагаются на неорганические и возвращаются к продуцентам. Таким образом, структуру экосистемы образуют три уровня (продуценты, консументы, редуценты) трансформации энергии и два круговорота - твердых и газообразных веществ.В структуре и функции экосистемы воплощены все виды активности организмов, входящих в данное биотическое сообщество: взаимодействия с физической средой и друг с другом. Однако организмы живут для самих себя, а не для того, чтобы играть какую-либо роль в экосистеме. Свойства экосистемы слагаются благодаря деятельности входящих в нее растений и животных.Способность экосистемы к самоподдержанию и саморегулированию реализуется через гомеостаз. В основе гомеостаза лежит принцип обратной связи, который можно продемонстрировать на примере зависимости плотности популяции от пищевых ресурсов. Обратная связь возникает, если «продукт» оказывает влияние на «датчик» В результате отклонения плотности популяции от оптимума в ту или иную сторону увеличивается рождаемость или смертность, результатом чего будет приведение плотности к оптимуму. Такая обратная связь, т. е. связь, уменьшающая отклонение от нормы, называется отрицательной обратной связью. Положительная же обратная связь увеличивает это отклонение.Облик биотического сообщества определяется не только разнообразием видов и другими показателями, которые отражают связи между видами, входящими в состав биотического сообщества. Функционирование сообщества и его стабильность зависят также от популяционных связей, от распределения организмов в пространстве и характера их взаимодействия с внешней средой. Все это составляет понятие внутренней организации сообщества. О ней можно судить на основании следующих параметров:1. Стратификация (зональность): растения и животные распределены не равномерно по всей экосистеме, а пятнами, в которых плотность может быть максимальной или, наоборот, минимальной.2. Активность (периодичность): периодичность сообщества является результатом синхронной активности в течение дня и ночи целых групп организмов. Для всех сообществ характерна также сезонная периодичность, что нередко приводит почти к полному изменению структуры сообщества в течение года.Изменение экосистем может происходить под воздействием разных причин. В зависимости от вектора действующих сил различают:1. Аллогенные изменения, которые обусловлены влиянием геохимических сил, действующих на экосистему извне. В качестве таковых могут выступать климатические и геологические факторы.2. Автогенные изменения, которые обусловлены воздействием процессов, протекающих внутри экосистемы.В большинстве случаев, однако, трудно разграничить процессы, находящиеся под влиянием внешних и внутренних факторов. Например, эвтрофикация озер происходит под действием населяющих их сообществ, толчком к изменению которых служит поступление в озеро питательных веществ извне, с водосбора.Тем не менее, степень участия сообщества в преобразовании экосистемы, как правило, устанавливается без особого труда и, кроме того, автогенные изменения характеризуются рядом различимых специфических признаков.
2. Особенности основных биосферных циклов
Циклы функционируют под действием биологических и геологических факторов. Существование биогеохимических циклов создает возможность для саморегуляции системы, что придает ей устойчивость - постоянный количественный состав по различным химическим элементам в ней.В связи с хозяйственной деятельностью человечества и вовлечением в окружающую среду техногенных продуктов этой деятельности, возникают проблемы, обусловленные нарушением природных биогеохимических циклов. Эти нарушения связаны как с изменением баланса в циклах, так и с появлением новых химических соединений, ранее отсутствующих в естественных процессах. Циклы некоторых элементов (например, азота, серы, фосфора, калия, тяжелых металлов) превратились в настоящее время в природно-антропогенные, характеризующиеся значительной незамкнутостью, что приводит к их накоплению и, соответственно, к воздействию на экосистемы.
3. Биосферный цикл углерода
Круговорот углерода связан с использованием СО при фотосинтезе; в процессе дыхания растение возвращает СО в атмосферу. Животные, поедая растения, возвращают в воздух добавочные количества СО. После своей смерти они, так же как и растения, служат субстратом для роста бактерий и грибов, которые в конечном счёте расщепляют органическое вещество до СО. Эрозия и растворение известняка приводят к освобождению карбонатов, а затем и СО. Некоторые организмы, погребённые в осадках, выводят из круговорота большие количества углерода, накопленные в виде нефти, газа, каменного угля и торфа. Но при сжигании этих горючих материалов углерод снова освобождается в виде СО. Организмы, обладающие известковыми раковинами, при своей гибели также временно связывают углерод, участвуя в образовании известняков или коралловых рифов.
4. Биосферный цикл азота
Цикл азота - пример сложного круговорота газообразных веществ, способных к быстрой саморегуляции. Схема цикла может быть представлена следующим образом: Атмосферный азот связывается при разрядах молний и в результате жизнедеятельности азотфиксирующих бактерий и водорослей, которые превращают его в растворимые нитраты. Нитраты попадают в почву или в воду, где они могут быть использованы растениями. Некоторое количество азотистых соединений выделяют в почву растения и животные, остальной азот, в конце концов, высвобождается при расщеплении растительного и животного материала бактериями, которые превращают его азотистые вещества в аммиак. Аммиак образуется также при вулканических процессах. Нитрифицирующие бактерии 1 фазы превращают аммиак в нитриты, из которых нитрифицирующие бактерии 2 фазы образуют нитраты. Денитрифицирующие бактерии возвращают азот в атмосферу, такой же кругооборот совершается и в морских местообитаниях.Азот наиболее распространен на Земле в форме газообразного N2. И хотя азот важнейший компонент белков и нуклеиновых кислот, растения не могут непосредственно брать его из атмосферы. Они способны усваивать лишь связанный с кислородом или водородом азот, т.е. переведенный в другие химические формы - аммиак, ионы аммония, нитрат - и нитрит-ионы. Важнейшая часть цикла - связывание азота совершается азотфиксирующими бактериями, связыванием в атмосферных процессах и промышленной фиксацией.Другой важный процесс цикла азота - восстановление нитрат-ионов до атмосферного азота. Осуществляется почвенными анаэробными бактериями - денитрификаторами.Денитрификация - главная причина потерь азота в земледелии (до половины связанного в удобрениях азота уходит в атмосферу). Велика роль антропогенного фактора в цикле азота. Прежде всего - промышленная фиксация азота (объемы сравнимы с природными). Основной метод фиксации - производство аммиака. Это токсичный газ с резким запахом. Взаимодействует с кислотными осадками, образуя плотные туманы.
5. Биосферный цикл фосфора
Страницы: 1,
2
Апрель (48)
Март (20)
Февраль (988)
Январь (720)
Январь (21)
2012 © Все права защищены
При использовании материалов активная
ссылка на источник
обязательна.