Рефераты. Закономерности передачи генетической информации

p align="left">в) 3/4 растений от 1/4 растений всей группы или 3/16 растений всей группы обладают другим новым сочетанием доминантного и рецессивного признаков (шероховатая форма и желтая окраска семян);

г) 1/4 pастений от 1/4 растений всей группы или 1/16 растений всей группы обладают обоими рецессивными признаками (шероховатая форма и зеленая окраска семян).

Возвращаясь к количественным данным по систематизации семян с учетом их формы и окраски (315, 108, 101 и 32), легко заметить, что они очень близки к выведенным выше отношениям. Поэтому, опираясь на эти результаты, Г. Мендель сделал заключение, в соответствии с которым гибриды F2 по двум парам признаков являются организмами четырех типов в отношении 9/15:3/16:3?16:1/16 или 9:3:3:1. Таким образом, результаты дигибридных скрещиваний садового гороха свидетельствовали о том, что расщепление одной пары признаков (круглая и шероховатая форма семян) совершенно не зависит от расщепления Другой пары признаков (желтая и зеленая окраска семян) и что для семян гибридов F характерны не только родительские комбинации признаков, но и рекомбинации (новые комбинации), т. е. сочетание двух пар признаков имеет независимым характер. Другими словами, перераспределение двух пар признаков при их передаче от одного поколения организмов к другим является независимым. Однако важно подчеркнуть, что в независимом перераспределении признаков Г. Мендель увидел независимое перераспределение факторов наследственности или, говоря современным языком, независимое перераспределение генов.

Чтобы понять независимое перераспределение генов, вновь обратимся к символике обозначив доминантный ген, контролирующий круглую форму семян, символом R, а его аллель, контролирующий шероховатую форму семян, -- символом г. Что касается доминантного гена, контролирующего желтую окраску семян, то обозначим его Y, а его аллель, контролирующий зеленую окраску семян, -- у. Используя эти символы и зная, что исходные родительские растения были чистолинейными, можно полагать, что растения, дававшие круглые желтые семена, несли гены RRYY, тогда как растения, дававшие семена шероховатой формы и зеле--ного цвета, несли гены ггуу. Следовательно, растения RRYY продуцировали гаметы RY, а растения rryy -- гаметы гу, объединение которых давало начало гибридным зиготам Fi с генотипом RrYy.

Как видно, гибриды F1 являются гетерозиготными растениями по двум парам генов, т. е. растениями RrYy. Если иметь в виду лишь форму семян, то гибриды F с генотипом Rr будут продуцировать гаметы Риг поровну. Если же иметь в виду одновременно форму и окраску семян, то каждая гамета, продуцируемая гибридом Fi с генотипом RrYy, будет нести не только один генный аллель для формы семян, но и один генный аллель для окраски семян. Так, например, гаметы с аллелем R или с аллелем г наполовину будут одновременно гаметами Y и наполовину одновременно гаметами у. Однако важно заметить, что сочетание аллеля, детерминирующего круглую форму семян, с аллелем, определяющим желтую окраску семян, или с аллелем, определяющим зеленую окраску семян, является делом случая. Поскольку перераспределение генов имеет независимый характер, то среди гамет R, продуцируемых Г,-гибридом RrYy, половина гамет будет обладать аллелем Y и половина -- аллелем у. Учитывая то, что гаметы R сами составляют половину гамет, продуцируемых гибридом F1, гаметы как RY, так и гу будут составлять по 1/4 от общего количества гамет гибрида F. Точно так же другая половина гамет, продуцируемая гибридом F1, т. е. гаметы г в свою очередь наполовину будут гаметами rY и наполовину -- гаметами Ry, составляя соответственно по \ I ц от общего количества гамет гибрида F1. Другими словами, гибриды F1 продуцируют гаметы четырех типов -- RY, Ry, rY и гу, причем в равных количествах. Заметим, что Ry и rY являются гаметами рекомбинантного типа.

Гаметы четырех типов, продуцируемые гибридами Гд, являются как мужскими, так и женскими, т. е. мужские гаметы будут гаметами четырех типов и женские гаметы будут гаметами четырех типов. Поскольку объединение тех или иных мужских и женских гамет при оплодотворении также является делом случая и одинаково вероятно, то скрещивания F1F1 дадут начало зиготам, несущим все 16 возможных комбинаций генов Фенотипически организмы F2 различаются между собой, т.к. 9 из них дают круглые желтые семена, 3 -- круглые зеленые, 3 -- шероховатые желтые и 1 -- шероховатые зеленые. Следовательно, фено-типическое отношение между организмами Fg составляет 9:3:3:1. Гибриды F2 различаются одновременно и по генотипу. Организмы, которые дают круглые и желтые семена, по генотипу можно классифицировать на четыре типа:

а) организмы с генотипом RRYY (гомозиготные по обеим парам генов и дающие потомство с таким же фенотипом и генотипом при скрещивании между собой);

б) организмы с генотипом RRYy (гомозиготные по паре генов, определяющих форму семян, но гетерозиготные по паре генов, определяющих окраску семян, вследствие чего являются чистолинейными в дальнейших скрещиваниях лишь по генной паре RR);

в) организмы с генотипом RrYY (гетерозиготные по паре генов, определяющих форму семян, но гомозиготные по паре генов, определяющих окраску семян, вследствие чего являются чистолинейными в дальнейших скрещиваниях лишь по паре генов YY);

г) организмы с генотипом RrYy (гетерозиготные по обеим парам генов и при скрещивании между собой будут давать потомство, подобное потомству Fg).

Кроме того, организмы с генотипами RRYY, RRYy, RrYY и RrYy различаются между собой и количественно, составляя отношение 1:2:2:4 (соответственно).

Приведенные выше рассуждения с использованием символов основаны на допущениях. Однако Г. Мендель проверил их экспериментально путем скрещиваний между собой всех 315 гибридов Fg, которые давали круглые желтые семена. Проанализировав потомство, полученное в этих скрещиваниях, он обнаружил организмы всех типов, которые следовало ожидать на основании допущений, приведенных выше (пп. а, б, в, г).

Для доказательства справедливости своих допущений о независимом распределении двух пар аллельных генов Г. Мендель использовал также и дигибридные анализирующие скрещивания растений Г,, дающих круглые желтые семена, с гомозиготными рецессивными по двум парам генов исходными родительскими растениями, дающими шероховатые зеленые семена. Вспомним, что гибриды Fi имеют генотип RrYy и продуцируют в равных количествах гаметы RY, rY, Ry и гу, тогда как исходные родительские гомозиготные рецессивные растения имеют генотип ггуу и продуцируют гаметы только одного типа -- гу. Следовательно, в результате этих скрещиваний можно было ожидать появление организмов, которые будут давать круглые желтые семена (генотип RrYy), шероховатые желтые семена (генотип rrYy), круглые зеленые семена (генотип Rryy) и шероховатые зеленые семена (генотип ггуу), причем в отношении 1 : 1 : 1 : 1 (в равных количествах). Как показали анализирующие дигибридные скрещивания, возникавшие гибриды по своим свойствам соответствовали ожидаемым.

Независимый характер перераспределения генов был установлен Г. Менделем и в скрещиваниях растений, различающихся между собой по трем парам признаков (тригибридные скрещивания). Рассмотрим один из менделевских экспериментов, в котором скрещивали растения садового гороха, дающие желтые круглые семена и имеющие красные цветки, с растениями, дающими шероховатые зеленые семена и имеющими белые цветки. Если использовать символы R и г, Y и у для обозначения пар генов, детерминирующих форму и окраску семян, а символы С и c -- для обозначения пары генов, детерминирующих окраску цветков, то тогда генотипы скрещиваемых растений двух линий можно обозначить как RRYYCC и ггуусс, соответственно, имея в виду также генотипы скрещиваемых организмов, можно было полагать, что последние продуцируют гаметы, несущие гены RYC и гены гус.

Тригибридные скрещивания дали начало гетерозиготным по всем трем парам генов тригибридам F1 с генотипом RrYyCc и вследствие доминантности фенотипически характеризующимся тем, что их семена будут круглыми желтыми, а цветки -- красными. Тригибриды F1 отличались от дигибридов F1 тем, что вследствие независимого перераспределения генов они продуцировали гаметы не четырех, а восьми типов: RYC, RYc, RyC, Rye, rYC, rYc, ryC и rye, где большинство гамет (кроме RYC и гус) являлось рекомбинантным, т. е. несло новые (рекомбинантные) сочетания генов. Тригибриды F1 отличались от дигибридов F1 также и тем, что случайное объединение между теми или иными их гаметами (восьми типов) при оплодотворении приводило к формированию не 16, а 64 комбинаций гибридов F2. Эти гибриды по фенотипу можно было разделить на 8 групп, состоящих из разного количества растений, для которых характерны следующие свойства:

круглые желтые семена, красные цветки -- 27 растений,

круглые желтые семена, белые цветки -- 9 --»--

круглые зеленые семена, красные цветки -- 9 --»--

шероховатые желтые семена, красные цветки -- 9 --»--

круглые зеленые семена, белые цветки -- 3 --»--

шероховатые желтые семена, белые цветки -- 3 --»--

шероховатые зеленые семена, красные цветки -- 3 --»--

шероховатые зеленые семена, белые цветки -- 1 --»--

Как мы уже видели, часть фенотипически сходных моногибридов F2 и дигибридов F2 генотипически разнообразна. Аналогичная ситуация имела место и в случае части фенотипически сходных тригибридов F2. To, что это действительно было так, экспериментально устанавливалось путем скрещиваний тригибридов F2 между собой и изучения тригибридов F3.

Заканчивая изложение экспериментов Г. Менделя, свидетельствующих о независимом характере перераспределения генов, остановимся кратко на перераспределении генов при других полигибридных скрещиваниях. Количество генных комбинаций в полигибридных скрещиваниях (например, тетрагибридных) возрастает с вовлечением в наблюдения каждой новой пары генов, ибо каждая новая пара приводит к двойному увеличению типов гамет, продуцируемых гибридами F1, к тройному увеличению количества разных генотипов среди гибридов F2 и к увеличению в 4 раза количества возможных комбинаций при оплодотворении гамет, продуцируемых гибридами F3.

Одна из важнейших особенностей полигибридных скрещиваний заключается в том, что увеличение количества генов, вовлекаемых в скрещивания, сопровождается снижением частоты появления среди гибридов F^ организмов исходных родительских типов и увеличением количества организмов, несущих рекомбинантные сочетания генов. Например, с вовлечением в скрещивание одного гена (одной пары аллелей) встречается по одному организму, похожему на организмы каждого исходного родительского типа среди 4 гибридов F2, с вовлечением в скрещивание двух генов (двух пар аллелей) -- среди 16 гибридов, с вовлечением в скрещивание трех генов (трех пар аллелей) -- среди 64 гибридов и т. д. В тех случаях, когда количество генов (n), вовлекаемых в скрещивания, составляет десятки и даже сотни, общее количество генотипов (3n), в том числе гомозиготных (2n), которое может возникать в потомстве одного гетерозиготного организма, достигает огромных размеров. Благодаря независимому перераспределению генов (свободной рекомбинации генов) половой процесс создает огромное генетическое разнообразие организмов.

Подведем итоги рассмотренных в этом разделе экспериментов Г. Менделя. По данным дигибридных скрещиваний для передачи генов от одного поколения организмов к другому характерно их независимое расщепление и независимое перераспределение. Наряду с независимым расщеплением в дигибридных скрещиваниях выявляется и другая особенность. Растения F1, возникшие в результате слияния гамет RY и гу при скрещивании исходных линий, дающих круглые желтые и шероховатые зеленые семена, в свою очередь продуцируют не только комбинации родительских гамет RY и гу, но и гаметы нового типа, несущие рекомбинантные фракции генов Ry и rY, притом в равном количестве. Что касается растений F1, возникших после скрещивания линий, дающих шероховатые желтые и круглые зеленые семена, в результате слияния их гамет Yr и yR, то они кроме этих гамет тоже дадут гаметы, несущие рекомбинантные гены YR и уг, и тоже в равном количестве. Следовательно, образование гибридами F^ одинакового количества родительских и рекомбинантных гамет является неотъемлемой особенностью независимого расщепления и перераспределения двух пар генов.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.