Рефераты. Заместительная терапия при муковисцидозе

p align="left">Итак, классические представления цитологии рисуют картину, согласно которой секреторные белки синтезируются в соответствии с генетической информационной программой клетки, передающейся через РНК от ДНК, на рибосомах, расположенных на мембранах так называемого гранулярного эндогогазматического ретикулума (ГЭР). Образующийся предшественник белка претерпевает соответствующие изменения одновременно с перемещением к месту своей реализации. В частности, первоначально предшественник белка перемещается во внутрь каналов или цистерн ГЭР, где он подвергается некоторым преобразованиям, и затем транспортируется к цистернам и мембранам аппарата Гольджи. В комплексе Гольджи происходит накопление секреторного белка в конденсирующих вакуолях, которые постепенно уплотняются и преобразуются в зрелые секреторные гранулы, подлежащие экструзии путем экзоцитоза. Обычно этот процесс от начала синтеза до выделения готового продукта занимает в среднем 1 - 1,5 часа. На скорость выделения образовавшегося секрета влияют скорость слияния мембран секреторных гранул с плазматической мембраной клетки, концентрационный градиент (концентрация веществ внутри клеток и в просветах ацинусов и протоков).

Важно подчеркнуть, что, вероятнее всего, сам гландулоцит способен избирать разные пути оформления и выведения секрета в зависимости от типа и вида раздражителя, его дозы и длительности воздействия. К тому же и все железистые клетки отличаются друг от друга по характеру вырабатываемых субстратов белковых, мукополисахаридных, водно-солевых. Все это находит отражение и в морфологическом строении гландулоцитов. Однако описание этих отличий уже выходит за рамки данного очерка.

2. Механизмы экзосекреции

Таким образом, при всех структурных и функциональных различиях все секретирующие клетки имеют общее происхождение, механизмы образования и внутриклеточной транспортировки секрета. Природа достаточно консервативна, что применительно к экзокринным железам и органам свидетельствует о единстве многих основополатающих механизмов. Следовательно, при кажущихся крайностях в жизнедеятельности экзокрикных желез между ними лежит практически весь спектр медицинских профессий - от педиатрии и терапии до урологии и гинекологии.

Во многих органах организма с точки зрения экзокринологии эпителий разделяется на преимущественно всасывательный, например кишечник, желчный пузырь и др., и секретирующий, например поджелудочная, слюнные и др. железы. С другой стороны, характер выделяемого секрета позволяет разделить железы внешней секреции на неслизеобразующие, состав конечного продукта которых состоит в основном из водноэлектролитного компонента (потовые, слезные, слюнные), и слизеобразующие, секрет которых кроме водноэлектролитного содержит и иной субстрат - белковый, мукопротеиновый, мукополисахаридный (поджелудочная, предстательная железы, железы эпителия респираторного гракта и др.).

Таким образом, вполне обосновано, и тому имеется множество доказательств, предположить сходство генеральных механизмов синтетических, транспортных и иных процессов в экзокринных opганах и тканях.

Хотя до настоящего времени еще нет полного представления о путях транспорта и выведения секрета из клеток, а специализация экзокринных клеток различна, тем не менее, установлены некоторые общие механизмы экзосекреции. Как известно, секреторный ответ возникает на внешний стимул "первичных мессенджеров" (посредников) - нейротрансмиттеров, гормонов, метаболитов или подавляющее действие каких-либо факторов. Секретогенные вещества, взаимодействуя с рецепторами мембран ацинарных клеток индуцируют два функционально различных пути стимуляции - через нервные и гормональные механизмы. Один из них включает активацию АЦ, которая выполняет роль вторичного мессенджера, расположенного на внутренней стороне мембраны, повышение уровня цАМФ в клетках и затем активацию цАМФ-зависимой от протеинкиназы - фермента, состоящего из двух регуляторных и двух каталитических субъединиц. Освобожденная каталитическая субъединица фосфорилирует белковый субстрат и вызывает усиление секреции.

Другой механизм действует через мобилизацию пула внутриклеточного кальция. Весьма значительную, если не главенствующую, роль в этом играет белок кальмодулин (КМ), имеющий четыре связи с кальцием, и за счет этих связей переходящий в активное состояние. Проникновение кальция в клетку может идти через АГФ-зависимые кальциевые насосы. При повышении концентрации кальция он связывается с Са2+КМ, и этот комплекс воздействует на Са-транспортирующий белок (носитель). Выходящий из клетки натрий может обмениваться на кальций, который входит в нее.

Результаты физиологических исследований показали, что в регуляции деятельности мукозных желез доминирует иннервация, имеющая холинергический и парасимпатический характер. Однако это отнюдь не исключает участия в секреции симпатических адренергических путей проведения нервных импульсов и, возможно, неадренргической нехолинергическои иннервации.

Секретогенными веществами, запускающими механизм повышения цАМФ, являются секретин и вазоактивный интестинальный пептид (ВИЛ), а вызывающими мобилизацию клеточного кальция - хастрин и холецистокинин. И хотя начальные этапы инициации секреции различны, в последующих фазах они взаимодействуют и аддитивный окончательный эффект может быть большим, чем простая сумма двух взаимодействий Секреторная активность потовых, слюнных, слезных, бронхиальных и других эккриновых желез находится под влиянием не только адренергической и холинергической систем, но и иннервации пептидными волокнами.

Эффект стимуляции мукозных желез, аналогичный симпатической нервной, был получен in vitro при воздействии на железы агонистами ?-адренорецепторов. Гистологические исследования показали, что нервы, содержащие катехоламины, располагаются как между ацинусами, так и в самих ацинусах между гландулоцитами. Нервные волокна, содержащие мелкие зернистые пузырьки, по характеру своему являются адренергическими и у человека располагаются вблизи гландулоцитов. Кроме того, способностью ускорять железистую секрецию обладает и вазоактивный интестинальный пептид (ВИЛ) и, вероятно, так называемая субстанция Р. Все вышесказанное характеризует автономный контроль секреции слизи гландулоцитами.

Роль гормонов как мощных и универсальных регуляторов жизнедеятельности клетки изучена достаточно подробно. В частности, в последние годы было показано, что пролактин (ПЛ) регулирует резорбцию хлора в экзокринных железах. Пролактин представлен в гранулах так называемой диффузной эпителиальной эндокринной системы (DEE) клеток секреторного кольца человеческих потовых клеток. Пептиды и другие гормоны, секретированные паракринно или аутокринно в клетках DEE участвуют в регуляции локальной клеточной активности. Вероятно ПЛ модулирует концентрацию хлора в секрете через реабсорбцию соли в протоках на люминальной мембране. Кроме того, ПЛ может ингибировать активность фосфолипазы А2 и освобождение арахидоновой кислоты.

Гораздо менее исследовано влияние некоторых других медиаторов. В частности, экспериментально установлено, что ацинарные клетки имеют рецепторы к простагландинам и Pg-опосредованный эффект реализуется в подавлении ферментообразования экзокринными клетками.

Образование секрета складывается из двух процессов секреции электролитов, выраженных, однако в различных железах в неодинаковой степени. Например, изотонический, богатый Сl- секрет ацинарных клеток поджелудочной железы, стимулированный ацетилхолином, холецистокинином, в разных пропорциях смешивается с изотоническим секретом, богатым НСО3, образующимся в эпителии протоков в ответ на секретин и ВИЛ.

Доля обогащенного Сl- секрета в общей секреции у человека невелика. В ответ на стимуляцию м-холинорецепторов и в меньшей степени а-адренорецепторов секрет ацинарных клеток поджелудочной железы по Сl- составу подобен плазме. Между тем, секреция опосредована переносчиками Na+/ Сl- и Na+/H+ или их эквивалентами. Это становится тем более понятно, если учесть, что движение ионов не есть самоцель, а необходимо для перемещения определенного, физиологически оправданного в данное время и при данных обстоятельствах, количества жидкости.

Законы термодинамики допускают не только чресклеточное, но и межклеточное перемещение жидкости. Однако ответ становится очевидным в пользу чресклеточного перемещения воды при самой постановке вопроса: могут ли быть соединительные межклеточные комплексы и структуры способны пропустить большое количество жидкости и не допустить при этом ощутимой для целостного организма потери выделяющихся ионов?

В свою очередь понимание единых механизмов секреции позволяет представить те механизмы полома, которые возникают при целом ряде патологических состояний и заболеваний, и на этой основе приступить к разработке и применению в практической деятельности ряда терапевтических комплексов.

2.1. Секреция поджелудочной железы

Одним из наиболее массивных экзокринных органов является поджелудочная железа, которая, кроме того, секретирует и ряд гормонов, в частности инсулин. Гормоны поджелудочной железы секретируются ?-, ?- и ?-клетками островков Лангерганса и в основном регулируют углеводный обмен в организме. Островки Лангерганса расположены среди клеток железистой паренхимы, составляющих основную массу железы.

У человека поджелудочная железа за сутки выделяет около 1,5-2 литров сока, что означает продукцию железой массой 80-100 г 20 мл на 1 г массы в сутки. Столь высокая производительность почти не имеет равных в организме человека. Панкреатический сок представляет собой сложное образование [бесцветная изоосмотичная плазме крови жидкость щелочной реакции (рН 7,8-8,4), без запаха и с удельным весом 1007-1009], которое достаточно условно можно разделить на два компонента. Во-первых, это его главная составляющая - органические вещества в основном белкового происхождения, наиболее важными из которых являются пищеварительные ферменты: протеазы, липаза, амилаза, в общей сложности до 12 ферментов. Из 6-8 пищеварительных ферментов, ежедневно выделяемых в желудочно-кишечный тракт человека, 4-5 г вырабатывается поджелудочной железой. Во-вторых, это водоэлектролитный компонент, содержащий в числе прочих бикарбонаты, микроэлементы, а также слизь. Образование панкреатического секрета является суммой двух процессов секреции электролитов. Изотонический, богатый С1- секрет, образующийся, по-видимому, в ацинарных клетках и высвобождающийся под действием ацетилхолина и холецистокинина-панкреозимина, в различных пропорциях смешивается с изотоническим секретом, богатым НСО3, который, вероятно, образуется в эпителии протоков в ответ на секретин и ВИЛ. Доля обогащенного С1- секрета ацинарных клеток в общей секреции у человека минимальна.

В постнатальном периоде поджелудочная железа начинает особенно интенсивно развиваться в периоде от 6 мес до 2 лет, что обусловлено качественным и количественным изменением питания. В ответ на введение секретина поджелудочная железа отвечает увеличением всех ферментов у детей старше 2-х лет. Однако развитие железы продолжается и в более старшем возрасте, что прослеживается морфологически в постепенном появлении бугристости и стирании границ между дольками.

Паренхима поджелудочной железы представляет собой отдельные трубчато-альвеолярные дольки, состоящие из эпителиальных клеток, секретирующих панкреатический сок. Структурная единица паренхимы железы - ацинус - состоит из 8-12 ацинарных клеток, нескольких центроацинарных клеток, межклеточных секреторных капилляров и внутридолькового протока. Ацинарные клетки поджелудочной железы имеют форму усеченного конуса с широким основанием и содержат 22% грубого шероховатого ретикулума, митохондрии составляют около 8%, зимогенные гранулы - 6,4% и конденсированные вакуоли - 0,7%. В секреторных клетках различают исчерченный наружный пояс и внутренний зернистый. Таким образом, морфология секреторных клеток поджелудочной железы типична для клеток, вырабатывающих белковый секрет. Н.К. Пермяков и соавт. выделяют пять фаз секреторного цикла, развертывающегося на определенных территориях клетки:

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.