Гетеротрофы наряду с органическими соединениями используют и СО2, вовлекая его в обмен веществ. Углекислый газ служит дополнительным источником углерода для биосинтеза веществ тела.
Специфичностью отношений микроорганизмов к источнику углеродистой пищи определяется круговорот углерода в природе. Эта особенность гетеротрофов проявляется и при порче многих пищевых продуктов, при смене развития одних форм другими.
Азотное питание. Источники азота -- элемента, необходимого для синтеза белков, нуклеиновых кислот и других азотсодержащих веществ клетки, -- у микроорганизмов могут быть также очень разнообразными.
Наиболее высокими требованиями обладают паразиты, развивающиеся только за счет органических азотсодержащих веществ того организма, в котором они паразитируют.
Известны сапрофиты (молочнокислые и некоторые гнилостные бактерии), которые тоже не могут синтезировать белки своего тела из простых азотсодержащих соединений. Развитие их возможно лишь при наличии в среде сложных органических форм азота (пептонов, пептидов) или полного набора аминокислот, входящих в состав белков их клеток.
Другие сапрофиты могут развиваться в субстратах, содержащих только некоторые аминокислоты и даже одну-две из них, а все остальные синтезируют сами. Они дезаминируют взятые аминокислоты и образующийся аммиак используют в реакциях аминирования оксикислот или чаще кетокислот, например:
NН3 + СН2ОНСНОНСООН СН2ОНСНNН2СООН + Н20;
глицериновая кислотасерин
NН3 + Н2 + НООССН2СОСООН НООCCН2CНNН2CООН + H2O.
щавелевоуксусная кислота аспарогиновая кислота
Синтез новых аминокислот может протекать и без дезаминирования взятых из субстрата аминокислот (без промежуточного образования аммиака) путем перестройки их (переаминирования) -- переноса аминогруппы с аминокислоты на кетокислоты при участии ферментов аминотрансфераз:
R1СНNH2СООН + R2СОСООН R1СОСООН + R2СНNН2СООН.
Многие сапрофиты (бактерии, грибы, дрожжи) не нуждаются в готовых аминокислотах, довольствуясь минеральными соединениями азота, наилучшими из которых являются аммонийньие соединения.
Многие микроорганизмы (преимущественно грибы, актиномицеты, реже бактерии) используют в качестве источника азота нитраты, реже нитриты. Эти окисленные формы азота предварительно восстанавливаются с образованием аммиака.
Есть бактерии и грибы (из класса базидиомицетов), способные использовать свободный азот атмосферы. Они переводят его в связанное состояние, восстанавливая в аммиак, который и используется для синтеза аминокислот. Эти микроорганизмы называют азотфиксаторами, или азотсобирателями. Примером могут служить клубеньковые бактерии, обитающие в корнях бобовых растений, и свободно живущие в почве азотфиксирующие бактерии. Аммиак, таким образом, является промежуточным продуктом ассимиляции различных источников азота.
Усвоение зольных элементов. Для синтеза клеточных веществ нужны различные зольные элементы: сера, фосфор, калий, кальций, магний, железо. Хотя потребность в них и незначительна, однако при недостатке в питательной среде даже одного из этих элементов микроорганизмы не будут развиваться и могут погибнуть.
Большинство микроорганизмов способно усваивать зольные элементы из минеральных солей.
Микроэлементы, необходимые для роста микроорганизмов, могут быть использованы также в виде минеральных солей.
Источником кислорода и водорода являются вода и различные другие вещества.
Потребность микроорганизмов в витаминах. В составе каждой микробной клетки имеются различные витамины. Они необходимы для нормальной жизнедеятельности; некоторые витамины входят в состав простетических групп ферментов.
Одни микроорганизмы должны получать витамины в готовом виде. Так, для очень многих бактерий необходимо наличие в среде никотиновой кислоты (витамин РР), тиамина (витамин В1), рибофлавина (витамин В2), биотина, пантотеновой кислоты и др. При отсутствии того или иного витамина в среде резко нарушается обмен веществ у микроорганизмов. Добавление в питательную среду недостающего витамина ликвидирует задержку роста, поэтому витамины нередко называют «ростовыми веществами».
Другие микроорганизмы хорошо развиваются и при отсутствии витаминов в среде. Они способны сами синтезировать витамины из веществ питательной среды, накапливать их в своем теле и выделять из клетки наружу. Некоторые микроорганизмы синтезируют витамины в количествах, значительно превышающих их потребности. Такие микроорганизмы используются для промышленного производства витаминов. Так, с помощью гриба Еrетоthеcium ashbyii получают витамин В2.
4. Пропионовокислое брожение, основные участники пропионовокислого брожения, их характеристика, использование пропионовокислых бактерий в народном хозяйстве
Пропионовокислые бактерии являются возбудителями пропионовокислого брожения, при котором углеводы ферментируются с образованием главных продуктов брожения - пропионовой кислоты и её солей - пропионатов.
Пропионовокислое брожение - это превращение сахара или молочной кислоты и её солей в пропионовую и уксусную кислоты с выделением углекислого газа и воды:
3C6H12O6 - 4CH3CH2COOH + 2CH3COOH + 2CO2 + 2H2O;
3CH3CHOHCOOH - 2CH3CH2COOH + CH3COOH + CO2 + H2O.
Некоторые пропионовокислые бактерии образуют, кроме того, немного других кислот (муравьиную, янтарную, изовалериановую).
При пропионовокислом брожении превращение глюкозы до пировиноградной кислоты протекает также по гликолитическому пути. В дальнейшем пировиноградная кислота, претерпевая ряд превращений, восстанавливается в пропионовую. Брожения вызывают бактерии, относящиеся к семейству Propionibacteriaceae, роду Propionibacterium. Это неподвижные, бесспоровые, грамположительные палочки, слегка искривленные. В неблагоприятных условиях развития клетки принимают булавовидную форму.
Пропионовокислые бактерии требовательны к пище (источнику азота и витаминов).
Большинство не развиваются при рН среды ниже 5,0 - 4,5. Они факультативные анаэробы, могут переносить лишь низкое парциональное давление кислорода. Оптимальная температура их развития 30 - 350С, отмирают при температуре 60 - 700С. Эти бактерии, помимо сахаров и молочной кислоты, способны сбраживать пировиноградную кислоту, глицерин и другие вещества. Они разлагают (дезаминируют) аминокислоты, при этом выделяются жирные кислоты.
Превосходный рост всех пропионобактерий может быть получен на трипсиново-дрожжевой экстрат-глюкозной среде, содержащей 0,05% твина-80. Бактерии хорошо растут в бульоне с пептоном, дрожжевым экстратом и глюкозой в глубоких пробирках при свободном доступе воздуха. Вызывают помутнение бульона и образование часто окрашенного осадка. Большинство штаммов растёт в глюкозном бульоне с 20% желчи и 6,5% NaCl.
На плотной среде (кровяном агаре) пропионовокислые бактерии образуют мелкие выпуклые полупрозрачные блестящие колонии, которые могут быть белыми, серыми, розовыми, красными, жёлтыми или оранжевыми.
Пропионобактерии являются хемоорганотрофами. Продукты ферментации включают большие количества пропионовой и уксусной кислот, и меньшие количества изовалериановой, муравьиной, янтарной, молочной кислот и диоксида углерода.
В молоке пропионовокислые бактерии развиваются медленно и свёртывают его через 5 - 7 дней.
Несмотря на слабую энергию кислотообразования при развитии этих бактерий, предельная кислотность молока может достигать 160 - 170 0Т.
Пропионовокислому брожению подвергаются различные углеводы, в том числе глюкоза и лактоза, а также лактаты, то есть соли молочной кислоты, и пептон.
Пропионовокислые бактерии используют в составе заквасок при производстве твёрдых сыров с длительным сроком созревания.
После окончания молочнокислого брожения лактозы в созревающем сыре наступает стадия пропионовокислого брожения, сопровождающаяся сбраживанием молочной кислоты в уксусную и пропионовую кислоты. Эти кислоты придают сырам острый вкус, а образующийся диоксид углерода формирует рисунок сыра (глазки). Пропионовокислые бактерии способны синтезировать витамин В12 и обогащать им молочные продукты. Кожные пропионобактерии витамина В12 не продуцируют. Проптонобактерии образуют аммиак из белковых веществ, фермент каталазу и ферменты дегидрогеназы и цитохромы.
Пропионовокислое брожение является одним из важных процессов при созревании сычужных сыров.
Пропионобактерии обнаруживаются в основном в сыре и в молочных продуктах, а также на кожных покровах человека.
Пропионовая кислота и её соли служат ингибиторами мицелиальных грибов и могут быть использованы для предотвращения плесневения продуктов.
Таким образом, мы видим значительную роль микроорганизмов в природе и жизни человека. С помощью микроорганизмов происходят важныепроизводственные процессы. Знание жизнедеятельности, закономерность и условия развития микроорганизмов позволяет правильно использовать их в технологии производства. Технологу в практической деятельности постоянно приходится использовать знания микробиологии.
Литература
1. Мудрецова - Висс К. А. Микробиология. Учебник для товароведов и технологических факультетов торговых вузов. М.: Экономика, 1978г.
2. Степаненко П.П. Микробиология молока и молочных продуктов: Учебник для ВУЗов. - Сергиев Посад, 1999г.
3. Методические рекомендации по организации производственного микробиологического контроля на предприятиях молочной промышленности (с атласом значимых микроорганизмов). МР 2.3.2.2327-08 ГНУ ВНИИМС 2008г.
4. Мудрецова - Висс К. А., Кудряшова А. А., Дедюхина В. П. Микробиология, санитария и гигиена.
Страницы: 1, 2