Рефераты. Генетика и проблемы человека - (контрольная)

p>Прежде всего, следует сказать о том, что теперь полностью доказано, что носители наследственности являются хромосомы, которые состоят из пучка молекул ДНК.

Были проведены довольно простые опыты: из убитых бактерий одного штамма, обладающего особым внешним признаком, выделили чистую ДНК и перенесли в живые бактерии другого штамма, после чего размножающиеся бактерии последнего приобрели признак первого штамма. Подобные многочисленные опыты показывают, что носителем наследственности является именно ДНК.

В 1953 г. Ф. Крик (Англия) и Дж. Уотстон (США) расшифровали строение молекулы ДНК. Они установили, что каждая молекула ДНК слагается из двух полидезоксирибонуклеиновых цепочек, спирально закрученных вокруг общей оси. В настоящее время найдены подходы к решению вопроса об организации наследственного кода и экспериментальной его расшифровке. Генетика совместно с биохимией и биофизикой вплотную подошла к выяснению процесса синтеза белка в клетке и искусственному синтезу белковой молекулы. Этим начинается совершенно новый этап развития не только генетики, но и всей биологии в целом. Развитие генетики до наших дней –это непрерывно расширяющийся фонт исследований функциональной, морфологической и биохимической дискретности хромосом. В этой области сделано уже много сделано уже очень много, и с каждым днем передний край науки приближается к цели–разгадки природы гена. К настоящему времени установлен целый ряд явлений, характеризующих природу гена. Во-первых, ген в хромосоме обладает свойством самовоспроизводится (авторепродукции); во-вторых, он способен мутационно изменяться; в-третьих, он связан с определенной химической структуры дезоксирибонуклеиновой кислоты–ДНК; в-четвертых, он контролирует синтез аминокислот и их последовательностей в белковой молекулы. В связи с последними исследованиями формируется новое представление о гене как функциональной системе, а действие гена на определение признаков рассматривается в целостной системе генов– генотипе. Раскрывающиеся перспективы синтеза живого вещества привлекают огромное внимание генетиков, биохимиков, физиков и других специалистов.

    Нуклеиновые кислоты.

Нуклеиновые кислоты, как и белки, необходимы для жизни. Они представляют собой генетический материал всех живых организмов вплоть до самых простых вирусов. Выяснение структуры ДНК открыло новую эпоху в биологии, так как позволило понять, каким образом живые клетки точно воспроизводят себя и как в них кодируется информация, необходимая для регулирования их жизнедеятельности. Нуклеиновые кислоты состоят из мономерных единиц, называемых нуклеотидами. Из нуклеотидов строятся длинные молекулы–полинуклеотиды. Молекула нуклеотида состоит из трех частей: пятиуглеродного сахара, азотистого основания и фосфорной кислоты. Сахар, входящий в состав нуклеотидов, представляет собой пентозу.

Различают два типа нуклеиновых кислот –рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов, другие - к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства. Пурины– это аденин (А) и гуанин (Г), а пиримидины –цитозин (Ц) и тимин (Т) или урацил (У). В молекулах пуринов имеется два кольца, а в молекулах пиримидинов–одно. В РНК вместо тимина содержится урацил. Тимин химически очень близок к урацилу, а точнее 5-метилурацил.

Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота. В результате соединения сахара с основанием образуется нуклеозид. Соединение происходит с выделением молекулы воды. Для образования нуклеотида требуется еще одна реакция конденсации, в результате которой, между нуклеозидом и фосфорной кислотой возникает фосфоэфирная связь. Разные нуклеотиды отличаются друг от друга природой сахаров и оснований, которые входят в их состав. Роль нуклеотидов в организме не ограничивается тем, что они служат строительными блоками нуклеиновых кислот; некоторые важные коферменты также представляют собой нуклеотиды или их производные.

Два нуклеотида, соединясь, Образуют динуклеотид путем конденсации. В результате которой между фосфатной группой одного нуклеотида и сахара другого возникает фосфодиэфирный мостик. При синтезе полинуклеотидов этот процесс повторяется несколько миллионов раз. Фосфодиэфирные мостики возникают за счет прочных ковалентных связей, и это сообщает всей нуклеотидной цепи прочность и стабильность, что очень важно, так как в результате этого уменьшается риск“поломок” ДНК, при ее репликации. РНК имеет две формы: транспортную (тРНК) и рибосомную (рРНК). Они имеют довольно сложную структуру. Третья форма - это информационная, или матричная, РНК (мРНК). Все эти формы участвуют в синтезе белка. МРНК–это одноцепочная молекула, образующаяся на одной из цепей ДНК в процессе транскрипции. При синтезе мРНК копируется только одна цепь молекулы ДНК. Нуклеотиды, из которых синтезируются мРНК, присоединяются к ДНК в соответствии с правилами спаривания оснований и при участии фермента РНК–полимеразы. Последовательность оснований в мРНК представляет собой комплиментарную копию цепи ДНК–матрицу. Длина ее может быть различной, в зависимости от длины полипептидной цепи, которую она кодирует. Большинство мРНК существует в клетке в течение короткого времени.

Рибосомная РНК кодируется особыми генами, находящимися в нескольких хромосомах. Последовательность в рРНК сходная у всех организмов. Она содержится в цитоплазме, где образует вместе с белковыми молекулами клеточные органеллы, называемые рибосомами. На рибосомах происходит синтез белка. Здесь“код”, заключенный в мРНК, транслируется в аминокислотную последовательность строящейся полипептидной цепи. Группы, образуемые рибосомами– полирибосомы (полисомы) –делают возможным одновременный синтез нескольких молекул полипептидов при участии одной молекулы мРНК.

Для каждой аминокислоты имеется специфическая тРНК, и все они доставляют содержащиеся в цитоплазме аминокислоты к рибосомам. Таким образом, тРНК играют роль связующих звеньев между триплетным кодом, содержащимся в мРНК и аминокислотной последовательностью в полипептидной цепи. Так как многие аминокислоты кодируются несколькими триплетами, число тРНК значительно больше 20 (идентифицировано уже 60). Каждая аминокислота присоединяется к одной из своих тРНК. В результате образуется аминоацил–тРНК, в котором энергия связи между концевым нуклеотидом А и аминокислотой достаточна для того, чтобы в дальнейшем могла образоваться пептидная связь с карбоксильной группой соседней аминокислоты.

    Генетический код.

Последовательность оснований в нуклеотидах ДНК должна определять аминокислотную последовательность белков. Эта зависимость между основаниями и аминокислотами является генетическим кодом. С помощью четырех типов нуклеотидов записаны параметры для синтеза белковых молекул. В код, состоящий из троек оснований, входит четыре разных триплета. Доказательство триплетности кода представил Ф. Крик в 1961 г. Для многих аминокислот существенное значение имеет только первые буквы. Одна из особенностей генетического кода состоит в том, что он универсален. У всех живых организмов имеются одни и те же 20 аминокислот и пять азотистых оснований.

В настоящее время успехи молекулярной биологии достигли такого уровня, что стало возможно определить последовательность оснований в целых генах. Эта серьезная веха в развитии науки, так как теперь можно искусственно можно синтезировать целые гены. Это нашло применение в генной инженерии. Биосинтез белков.

Единственные молекулы, которые синтезируются под прямым контролем генетического материала клетки, - это белки (если не считать РНК). Белки могут быть структурными (кератин, коллаген) или играть функциональную роль (инсулин, фибриноген и, главное, ферменты, ответственные за регуляцию клеточного метаболизма). Именно набор содержащихся в данной клетке ферментов определяет, к какому типу клеток она будет относиться. В 1961 году два французских биохимика Жакоб и Моно, исходя из теоретических соображений, постулировали существование особой формы РНК, выполняющей в синтезе белка роль посредника. В последствии этот посредник получил название мРНК.

Данные, полученные с помощью различных методов в экспериментах, показали, что процесс синтеза РНК состоит из двух этапов. На первом этапе (транскрипция) относительно слабые водородные связи между комплиментарными основаниями полинуклеотидных цепей разрываются, что приводит к раскручиванию двойной спирали ДНК и освобождению одиночных цепей. Одна из этих цепей избирается в качестве матрицы для построения комплиментарной одиночной цепи мРНК. Молекулы мРНК образуются в результате связывания друг с другом свободных рибонуклеотидов. Синтезированные молекулы мРНК, несущие генетическую информацию, выходят из ядра и направляются к рибосомам. После того, как образовалось достаточное число молекул мРНК, транскрипция прекращается и две цепи ДНК на этом участке вновь соединяются, восстанавливая двойную спираль. Второй этап–это трансляция, которая происходит на рибосомах. Несколько рибосом могут прикрепиться к молекуле мРНК, подобно бусинам на нити, образуя структуру, называемую полисомой. Преимущество такого комплекса состоит в том, что при этом на одной молекуле мРНК становится возможным одновременный синтез нескольких полипептидных цепей. Как только новая аминокислота присоединилась к растущей полипептидной цепи, рибосома перемещается по нитям мРНК. Молекула тРНК покидает рибосому и возвращается в цитоплазму. В конце трансляции полипептидная цепь покидает рибосому.

    Хромосомный комплекс человека.

На Земле не существует двух совершенно одинаковых людей, за исключением однояйцовых близнецов. Причины этого многообразия нетрудно понять с генетических позиций.

Число хромосом у человека –46 (23 пары). Если допустить, что родители отличаются по каждой паре хромосом лишь по одному гену, то общее количество возможных генотипических комбинаций– 223. На самом деле количество возможных комбинаций будет намного больше, так как в этом расчете не учтен перекрест между гомологичными хромосомами. Следовательно, уже с момента зачатия каждый человек генетически уникален и неповторим.

    Половые хромосомы человека.

Гены, находящиеся в половых хромосомах, называются сцепленными с полом. Явление сцепления генов, локализированных в одной хромосоме, известно под названием закона Моргана. В Х-хромосоме имеется участок, для которого в У-хромосоме нет гомолога. Поэтому у особи мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом, например цветовой слепоты, раннего облысения и гемофилии у человека. Гемофилия–сцепленный с полом рецессивный признак, при котором нарушается свертывание крови. Ген, детерминирующий этот процесс, находится в участке Х-хромосомы, не имеющем гомолога, и представлен двумя аллелями– доминантным нормальным и рецессивным мутантным. Особи женского пола, гетерозиготных по рецессиву или по доминанту, называют носителем соответствующего рецессивного гена. Они фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотря на наличие у отца нормального гена, сыновья матерей-носителей с вероятностью 50% будут страдать гемофилией.

    Свойства человеческого генома: Мутабельность.

Изменчивость организмов является одним из главных факторов эволюции. Она служит основным источником для отбора форм, наиболее приспособленных к условиям существования.

Изменчивость является сложным процессом. Обычно биологи делят ее на наследственную и ненаследственную. К наследственной изменчивости относят такие изменения признаков и свойств организмов, которые при половом размножении не исчезают, сохраняются в ряду поколений. К ненаследственной изменчивости–модификациям, или флюктуациям, относят изменения свойств и признаков организма, которые возникают в процессе его индивидуального развития под влиянием факторов внешней среды, сложившейся специфическим образом для каждого индивидуума, и при половом размножении не сохраняются.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.