K = [pic]
Откуда коэффициент распределения фосфора между металлом и шлаком:
L = (P2O5)/P2 = K[pic](FeO)5 [pic](CaO)4
Десульфация стали. Сера, также как и фосфор, является вредной примесью в
стали. Удаление серы можно представить в виде реакции
Feж + [S] +(CaO) = (CaS) + (FeO).
Уравнение для константы имеет вид:
К = [pic]
Коэффициент распределения серы
L = (S)/[S] = K(CaO)/(FeO).
Из уравнения следует, что повышение основности и снижение окисленности
шлака способствует десульфации. Положительную роль оказывает также
повышение температуры металла и активное перемешивание ванны. Повышению
степени удалении серы способствуют элементы, образующие сульфиды, более
прочные, чем сульфид железа. К таким элементам относятся редкоземельные
металлы.
Газы в стали. Газы (кислород, водород и азот) содержаться в любой стали.
Газы даже при содержании их в сотых и тысячных долях процента оказывают
отрицательное влияние на свойства металла.
Растворимость кислорода в стали характеризуется реакцией: [pic].
В готовом металле содержание кислорода должно быть минимальным.
Растворимость водорода и азота в металле починяется закону Стивенса:
[pic]; [pic], где pH и pN - парциальные давления газов; KH и KN -
растворимость водорода и азота при парциальном давлении соответствующего
газа равном, 0,1 МПа.
Уменьшение растворимости при переходе из жидкого в твердое состояние при
кристаллизации стали вызывает выделение газов из металла, что является
причиной образования ряда дефектов, например, флокенов[1], пористости в
слитках готовой стали и т. п. В присутствии некоторых элементов в металле
могут образовываться их соединения с азотом - нитриды. Наличие нитридов в
кристаллической структуре многих сталей отрицательно влияет на свойства
металла.
Азот и водород успешно удаляются из жидкой стали в результате реакции
окисления углерода. Образующийся по этой реакции СО, собирается в пузырьки,
которые вырываются на поверхность металла, пробивают находящийся под
металлов слой жидкого шлака и выходят в атмосферу. В результате этого
создается впечатление кипения жидкой ванны.
Всплывающие пузырьки СО захватывают по пути вверх некоторое количество
других газов - H2 и N2 (рис 1).
Чем энергичнее протекает кипение металла, тем меньше содержание газов и
тем лучше качество металла. Для удаления H2 и N2 применяют также вакуумную
обработку, продувку ванны нейтральным газом (аргоном) и др.
Рис. 1 Схема удаления газов из
жидкого металла в процессе кипения
Раскисление стали. Для снижения содержания кислорода в стали проводят ее
раскисление. Это, как правило, последняя и ответственная операция в
процессе выплавки стали. Раскисление - это процесс удаления кислорода,
растворенного в стали, путем связывания его в оксиды различных металлов,
имеющих большее сродство к кислороду, чем железо.
Наиболее распространенными раскислителями являются марганец и кремний,
используемые в виде ферросплавов, и алюминий.
Реакции раскисления можно представить следующим образом:
[O] + [Mn] = (MnO)
2[O] + [Si] = (SiO2)
3[O] + 2[Al] = (Al2O3)
В зависимости от условий ввода раскислителей в металл различают два
метода раскисления: глубинное (или осаждающее) и диффузионное раскисление.
При глубинном раскислении раскислители вводят в глубину металла. В этом
случае требуется определенное время для того, чтобы продукты раскисления -
оксиды кремния, марганца, алюминия всплыли в шлак. При диффузном раскилении
раскислители в тонко измельченном виде попадают в шлак, покрывающий металл.
Сначала в этом случае происходит раскисление шлака, а снижение содержания
кислорода в металле происходит за счет его перехода из металла в шлак, т.
е. [O] ==> (O). При диффузионном раскислении не происходит загрязнение
металла неметаллическими включениями - продуктами раскисления.
Для более глубокого раскисления применяют обработку жидкого металла в
вакууме или синтетическими шлаками.
В зависимости от степени раскисления различают спокойную, кипящую и
полуспокойную сталь.
Спокойная сталь - это сталь, полностью раскисленная, т. е. благодаря
вводу большого количества раскислителей весь кислород в стали находится в
связанном с элементом-раскислителем состоянии. При разливки такой стали
газы не выделяются, и она застывает спокойно.
Кипящая сталь - это сталь, частично раскисленная марганцем. При разливке
в слитки она бурлит (кипит) благодаря выделению пузырьков оксида углерода,
образующихся по реакции: [C] + [O] = {CO}.
Полуспокойная сталь - это сталь, по степени раскисленности занимающая
промежуточное место между кипящей и спокойной.
Полуспокойную сталь ракисляют частично в печи (марганцем) и затем в ковше
(кремнем, алюминием).
[pic]
Производство стали в конвертерах.
Кислородно-конвертерный процесс представляет собой один из видов передела
жидкого чугуна в сталь без затраты топлива путем продувки чугуна в
конвертере технически чистым кислородом, подаваемым через фурму, которая
вводится в металл сверху.
Впервые кислородно-конвертерный процесс в промышленном масштабе был
осуществлен в Австрии в 1952 - 1953 гг. на заводах в городах Линце и
Донавице (за рубежом этот процесс получил название ЛД по первым буквам
городов, в нашей стране - кислородно-конвертерного).
В настоящее время работают конвертеры емкостью от 20 до 450 т,
продолжительность плавки в которых составляет 30 - 50 мин.
Процесс занимает главенствующую роль среди существующих способов
массового производства стали. Такой успех кислородно-конвертерного способа
заключается в возможности переработки чугуна практически любого состава,
использованием металлолома от 10 до 30 %, возможность выплавки широкого
сортамента сталей, включая легированные, высокой производительностью,
малыми затратами на строительство, большой гибкостью и качеством продукции.
Кислородно-конвертерный процесс с верхней продувкой.
Конвертер имеет грушевидную форму с концентрической горловиной. Это
обеспечивает лучшие условия для ввода в полость конвертера кислородной
фурмы, отвода газов, заливки чугуна и завалки лома и шлакообразующих
материалов. Кожух конвертера выполняют сварным из стальных листов толщиной
от 20 до 100 мм. В центральной части конвертера крепят цапфы, соединяющиеся
с устройством для наклона. Механизм поворота конвертера состоит из системы
передач, связывающих цапфы с приводом. Конвертер может поворачиваться
вокруг горизонтально оси на 360о со скоростью от 0,01 до 2 об/мин. Для
больше грузных конвертеров емкостью от 200 т применяют двухсторонний
привод, например, четыре двигателя по два на каждую цапфу
Рисунок 2 Конвертер емкостью 300 т с двухсторонним приводом механизма
поворота
В шлемной части конвертера имеется летка для выпуска стали. Выпуск стали
через летку исключает возможность попадания шлака в металл. Летка
закрывается огнеупорной глиной, замешанной на воде.
Рисунок 3 Технологическая схема производства стали в кислородном конвертере
Ход процесса. Процесс производства стали в кислородном конвертере состоит
из следующих основных периодов (рис 3); загрузки металлолома, заливки
чугуна, продувки кислородом, загрузки шлакообразующих, слива стали и шлака.
Загрузка конвертера начинается с завалки стального лома. Лом загружают в
наклоненный конвертер через горловину при помощи завалочных машин лоткового
типа. Затем с помощью заливочных кранов заливают жидкий чугун, конвертер
устанавливают в вертикальное положение, вводят фурму и включают подачу
кислорода с чистотой не менее 99,5 % О2. Одновременно с началом продувки
загружают первую порцию шлакообразующих и железной руды (40 - 60 % от
общего количества). Остальную часть сыпучих материалов подают в конвертер в
процессе продувки одной или несколькими порциями, чаще всего 5 - 7 минут
после начала продувки.
На процесс рафинирования значительное влияние оказывают положение фурмы
(расстояние от конца фурмы до поверхности ванны) и давление подаваемого
кислорода. Обычно высота фурмы поддерживается в пределах 1,0 - 3,0 м,
давление кислорода 0,9 - 1,4 МПа. Правильно организованный режим продувки
обеспечивает хорошую циркуляцию металла и его перемешивание со шлаком.
Последнее в свою очередь способствует повышению скорости окисления
содержащихся в чугуне C, Si, Mn, P.
Важным в технологии кислородно-конвертерного процесса является
шлакообразование. Шлакообразование в значительной мере определяет ход
удаления фосфора, серы и других примесей, влияет на качество выплавляемой
стали, выход годного и качество футеровки. Основная цель этой стадии плавки
заключается в быстром формировании шлака с необходимыми свойствами
(основностью, жидкоподвижностью и т. д.). Сложность выполнения этой задачи
связана с высокой скоростью процесса (длительность продувки 14 - 24
минуты). Формирование шлака необходимой основности и заданными свойствами
зависит от скорости растворения извести в шлаке. На скорость растворения
извести в шлаке влияют такие факторы, как состав шлака, его окисленность,
условия смачивания шлаком поверхности извести, перемешивание ванны,
температурный режим, состав чугуна и т. д. Раннему формированию основного
шлака способствует наличие первичной реакционной зоны (поверхность
соприкосновения струи кислорода с металлом) с температурой до 2500о. В этой
зоне известь подвергается одновременному воздействию высокой температуры и
шлака с повышенным содержанием оксидов железа. Количество вводимой на
плавку извести определяется расчетом и зависит от состава чугуна и
содержания SiO2 руде, боксите, извести и др. Общий расход извести
составляет 5 - 8 % от массы плавки, расход боксита 0,5 - 2,0 %, плавикового
штампа 0,15 - 1,0 %. Основность конечного шлака должна быть не менее 2,5.
Окисление всех примесей чугуна начинается с самого начала продувки. При
этом наиболее интенсивно в начале продувки окисляется кремний и марганец.
Это объясняется высоким сродством этих элементов к кислороду при
сравнительно низких температурах (1450 - 1500о С и менее).
Окисление углерода в кислородно-конвертерном процессе имеет важное
значение, т. к. влияет на температурный режим плавки, процесс
Страницы: 1, 2, 3