Рефераты. Гамма метод

p align="left">Рис. 5. Кумулятивные заряды.

а -- заряд ЗПРВ для перфоратора ПРВ; б -- заряд ЗКПРУ для раз-рушающего усовершенствованного перфоратора КПРУ; / -- кумулятивная воронка; 2 -- крышка; 3 -- заряд ВВ; 4 -- детонатор промежуточный; 5 -- корпус

Кумулятивный заряд перфоратора (рис. 5) представляет собой прессованную шашку бризантного ВВ цилиндрической, конической пли овальной формы - кумулятивная выемка, в ко-торую вставлена металлическая воронка. В основании заряда находится детонатор. Инициирование взрыва снаряда производится от взрыва общего гибкого детонирующего шнура, который, в свою очередь, возбуждается от соответствующего взрывного устройства, чаще взрывного патрона.

Форма заряда позволяет уменьшить массу ВВ, не участвующую непосредственно в образовании кумулятивной струи, благодаря чему уменьшается вредное воздействие взрыва на корпус перфоратора или обсадную колонну.

По способу герметизации кумулятивных зарядов перфораторы делятся на две группы: корпусные и бескорпусные. Корпусные, в свою очередь, подразделяются на перфораторы с многократным использованием корпуса, обозначение которых ПК, и однократного использования - ПКО, ПКОС, ПНК. Бескорпусные перфораторы выпускаются частично разрушающимися -- ПКС, ПКР и полностью разрушающимися - КПР, ПР.

В корпусных перфораторах заряды и средства взрывания (детонирующий шнур и взрывной патрон) изолированы от внешней среды стальным корпусом, который выдерживает высокие гидростатические давления. Стальной корпус позволяет применять перфораторы этого класса в скважинах на больших глубинах при высоких температурах .и давлениях. Кроме того, корпусные перфораторы не загрязняют ствол скважины после перфорации и не оказывают разрушающего влияния на обсадную колонну и цементный камень в затрубном пространстве.

Кумулятивные корпусные перфораторы многократного использования типа ПК имеют толстостенный стальной герметичный корпус, в стенках которого против каждого заряда расположены гнездовые отверстия для прохождения кумулятивной струи. Каждое отверстие герметизируется металлической пробкой и резиновым уплотнением. Оси соседних зарядов и гнездовые отверстия располагаются с шагом, обеспечивающим необходимую плотность перфорации, и сдвинуты относительно соседнего заряда на 90°. Минимальное расстояние между соседними зарядами 75--85 мм. В одном корпусе размещено 10-- 12 зарядов. Для увеличения числа зарядов, одновременно опускаемых в скважину, корпусы перфораторов можно соединить. Один корпус выдерживает до 40 групповых взрывов.

В перфораторах ПКЮЗ, ПК85, ПКЮ5ДУ, ПК85ДУ применяются заряды в бумажнолитых оболочках. В перфораторах ПК95Н и ПК80Н заряды упакованы в массивные цинковые обо-лочки, а отверстия в корпусе перфоратора уплотнены винтовыми пробками с резиновыми кольцами. Пробивная способность, этих зарядов повышенная.

В корпусных перфораторах однократного использования (ПКО, ПКОТ) корпус изготовляется из сплошной тонкостенной трубы, простреливаемой кумулятивными струями. Для изготовления корпусов могут быть использованы насосно-компрессорные или бурильные трубы. Преимущество перфоратором этого типа -- возможность применения более мощных зарядов. Преимущество заключается также в том, что они позволяют спускать в скважину одновременно до 100 зарядов, а за одну операцию простреливать интервал мощностью до 10м.

Недостатки перфораторов ПКО: невозможность применения их на небольших глубинах (при гидростатических давлениях менее 10 МПа корпус разрушается); большой расход металла на одну операцию.

Все перфораторы, как правило, спускают в скважину на кабеле. Исключение составляют перфораторы типа ПНК, спускаемые в скважину на насосно-компрессорных или бурильных трубах. Отличие их от перфораторов ПК и ПКО заключено в конструкции взрывного устройства, которое размещено в головной части перфоратора не снабжено механическим приводом. Срабатывает механический привод под действием давления резинового шара: шар проталкивается по трубам потоком промывочной жидкости, закачиваемой насосом или компрессором.

Корпус перфоратора состоит из отдельных секций, соединенных переходником с устройством передачи детонации. Внутри каждой секции размещены гирлянда кумулятивных зарядов и отрезок детонирующего шнура.

Перфораторы типа ПНК обладают рядом преимуществ перед аппаратами других типов. Прежде всего, они позволяют вскрывать пласт при депрессии или равенстве давлений пластового и скважинного. Заряды обладают большой мощностью. За один спуск можно вскрыть интервалы мощностью до 60м. Перфораторы позволяют проводить перфорацию в наклонно - направленных скважинах при больших углах искривления ствола. Поскольку для спуска перфоратора ПНК в скважину не требуется кабель и геофизический подъемник, он получил распространение при испытании и освоении скважин в труднодоступных районах Крайнего Севера, Сибири.

В бескорпусных перфораторах герметизируется индивидуальной оболочкой каждый отдельный заряд. Оболочка выдерживает гидростатическое давление, но разрушается при взрыве. Материал герметизирующих оболочек -- стекло, керамика, ситалл, алюминий. Заряды собирают в длинные гирлянды. Взрывание производится детонирующим шнуром, срабатывающим от взрывного патрона.

В зависимости от вида механической сборки бескорпусные перфораторы могут быть частично или полностью разрушающимися.

В бескорпусных частично разрушающихся перфораторах заряды монтируются в стальной ленте или в стальных проволочных каркасах. После срабатывания зарядов деформированный каркас вместе с грузом извлекается из скважины.

В бескорпусных полностью разрушающихся перфораторах заряды собираются в длинные гирлянды с помощью звеньев разнообразной конструкции, которые при взрыве разрушаются и остаются в скважине. На поверхность поднимается кабель с наконечником.

Бескорпусные перфораторы имеют свои недостатки. Прежде всего, это значительное воздействие взрыва зарядов на обсадную колонну и цемент в затрубном пространстве. Кроме того, в скважине после взрыва остается значительное количество осколков оболочек и звеньев конструкции гирлянды. Однако эти перфораторы имеют и важные преимущества, основные из которых - возможность проводить работы в скважинах через насосно-компрессорные трубы, опущенные с открытым концом, вскрывать значительные по мощности интервалы. Это позволяет сократить время, затрачиваемое на испытание скважины и в конечном счете на освоение месторождения.

Вопрос № 3.

Опишите как определяется пористость по данным акустического метода.

Акустический метод в модификации регистрация интервального времени Т продольных волн (обеспеченной серийной аппаратурой) позволяет определять коэффициент пористости в карбонатных и терригенных породах с пористостью 5--25% при хорошем акустическом контакте между зернами минерального скелета, который характерен для сцементированных пород. В слабосцементированных (пески, алевролиты, терригенные породы с высокой глинистостью), а также в плотных карбонатных породах с интенсивной трещиноватостью, для которых характерен слабый акустический контакт между зернами или блоками породы и как следствие интенсивное ослабление акустического сигнала, акустический метод неприменим для определения коэффициента пористости. Все интервалы залегания в разрезе таких пород характеризуются повышенными или высокими значениями а -- коэффициента ослабления амплитуды упругой волны.

В породах, для которых возможно применение акустического метода для определения kп в зависимости от класса коллектора и структуры его перового пространства устанавливается тот или иной вид пористости. Так, в межзерновом коллекторе, терригенном или карбонатном, при отсутствии трещин и каверн по величине Т определяют открытую межзерновую пористость, которая, как правило, не отличается от общей пористости за исключением отдельных видов коллектора, в основном карбонатного имеющего закрытые поры. В кавернозно-межзерновом карбонатном коллекторе при отсутствии трещин или незначительной трещиноватости по величине Т находят значение kn, близкое к межзерновой пористости матрицы, если пустоты (условно каверны) имеют значительные размеры. В сложном трещинно-кавернозно-поровом карбонатном коллекторе в зависимости от коэффициента трещиноватости и ориентации трещин, а также размеров и взаимного расположения каверн по значению Т определяют или величину, близкую к kп общ либо к kп мз матрицы, или какое-то промежуточное между ними значение kп

Физической основой определения kп по данным акустического метода является уравнение среднего времени

Тп =Тск(1 - kп) + Тжkп, ( 1 )

где Тп - величина, получаемая по диаграмме интервального времени; ТСК и Тж - интервальное время в скелете породы и флюиде, заполняющем поры.

Решая уравнение ( 1 ) относительно kn, получаем формулу для расчета kn:

Kп = (Тп - Тск)/(Тж - Тск) ( 2 )

Для получения уравнения ( 1 ) применяют следующие способы. При мономинеральном скелете породы берут табличное значение Тск, соответствующее минеральному составу изучаемого объекта, определяют по специальной палетке или рассчитывают по формуле Тж с учетом минерализации .воды и термобарических условий и подставляют найденные значения в формулу ( 1 ). В величину kп, рассчитанную по формуле ( 2 ) с ис-пользованием значений констант Тск и Тж, затем вводят поправку за термобарические условия. Для породы с биминеральным и полиминеральным составом скелета этот способ неприменим, если неизвестен минеральный состав.

Сопоставляют по ряду пластов изучаемого разреза, охватывающих весь диапазон используемых параметров, значения Тп и kп (коэффициент kп определен по данным другого геофизического метода). Обрабатывая статистически полученные результаты, получают уравнение регрессии T = f(kn) в виде выражения ( 1 ) с конкретными значениями Тск и Тж (рис. 6). Преимущество такого способа заключается в том, что автоматически учитываются термобарические условия и неоднородный минеральный состав скелета.

Сопоставляют по ряду пластов изучаемого разреза, относящихся либо к неколлекторам, либо к водоносным коллекторам, значения Тп и 1/п с охватом всего диапазона изменения п (исключая продуктивные коллекторы). При статистической обработке результатов сопоставления получают график уравнения регрессии, при продолжении которого до пересечения с осью ординат Т устанавливают Тск. Величину Тж определяют, как в первом способе. В этом способе при расчете Тск также автоматически учитываются минеральный состав скелета породы и термобарические условия.

Определяют на образцах пород представительного керна из исследуемого геологического объекта значения параметров Тп и kп на специальной установке, воспроизводящей термобарические условия, близкие к пластовым. После статистической обработки результатов измерений получают одно (пли несколько) уравнений регрессии Т =f (kп) для фиксированных значений эф и t, отражающих термобарические условия на различной глубине (см. рис. 6). Последний способ получения уравнений (1 ) и ( 2 ) для расчета kп предпочтителен.

Рис. 6. Семейство зависимостей Т = f(kП) для терригенных продуктивных отложении широтного Прнобья при различной глубине Н их залегания (по В. М. Добрынину и Г. П. Ставкину).

Шифр кривых -- Н, м

Величину kп по диаграмме Тп определяют следующим образом. Сначала выделяют в разрезе изучаемый пласт и выбирают уравнение среднего времени, соответствующее минеральному составу и термобарическим условиям залегания данного пласта. При реализации первого способа используют следующие значения констант:

Порода Тск ' мкс/м

Песчаник, алевролит кварцевый и полимиктовый . . . . . . 170-182

Известняк . . . . . . . . . . . . . . . . . . . . . . . . 150 -160

Доломит . . . . . . . . . . . . . . . . . . . . . . . . . .128--143

Ангидрит . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Гипс . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Каменная соль . . . . . . . . . . . . . . . . . . . . . . . . 208

Для первых трех классов пород указан диапазон изменения Тск, соответствующий породам с разным акустическим контактом между зернами: чем меньше Тск для данного класса, тем лучше акустический контакт и, следовательно, степень цементации породы.

Затем определяют значение Тп и по формуле ( 2 ) или графической зависимости Т = f (kп) рассчитывают kп. При определении kn первым способом в полученное значение вводят поправку за термобарические условия.

Данные стандартного акустического метода используют для определения kп в необсаженных скважинах, пробуренных с растворами на водной и нефтяной основах. Есть принципиальная возможность определения kп по диаграммам широкополосного акустического метода, содержащим информацию о кинематических и динамических параметрах продольных м поперечных волн в обсаженных скважинах. Однако отсутствие практически применимой методики определения kп в обсаженных скважинах и необеспеченность геофизической службы серийной аппаратурой АКН-1 широкополосного акустического метода не позволяют пока использовать его для решения указанной задачи в обсаженных скважинах.

Используемая литература.

1. Добрынин В.М., Вендельштейн Б.Ю., Резванов Р.А., Афригян А.Н. Промысловая геофизика. М., Недра, 1986.

2. Резванов Р.А. Радиоактивные и другие неэлектричесеие методы исследования скважин. М.,Недра, 1982.

3. Григорян Н.Г., Пометун Д.Е., Горбенко Л.А., Ловля С.А. Прострелочные и взрывные работы в скважинах. М., Недра,1982.

4. Геофизические методы исследования скважин. Справочник геофизика. М., Недра, 1983

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.