Рефераты. Геотермальная энергетика, геотермальные ресурсы Дагестана

ода этой скважины относится к минеральным рассольным хлоридным, натриевым, йодо-бромным.

Годовая добыча термальной воды по Центральному промысловому участку, в состав которого входят Махачкалинский водозабор и Манасское месторождение составляет 414,3 мі/сут.

Месторождение Избербаш

Избербашское месторождение теплоэнергетических вод расположена в пределах г. Избербаш Республики Дагестан.

В геологическом отношении месторождение приурочена к Избербашской антиклинальной складке.

Водозабор Избербашского месторождения представляет 16 скважин, из которых 9- находятся в эксплуатации, 3-наблюдательные, 2-в простое и 2- в ожидании ликвидации.

Избербашский водозабор работает непрерывно на фонтанном режиме, геотермальные воды используются главным образом на горячее водоснабжение и розлив лечебно-столовой воды «Азиз». Эксплуатационные дебиты от 50 до 960 мі/сут, температура на устье 50-60єС, давление 0,6-3,6 атм., минерализация 2,02-5,52 г/л.

Сброс отработанных термальных вод осуществляется в городскую канализацию.

Месторождение Каякент

Расположено в пределах сел. Новокаякент Каякентского района Республики Дагестан. Водозабор представлен 4 скважинами, восстановленными из нефтяного фонда и давшими промышленные притоки термальной воды, которая однотипна и характеризуется слабой минерализацией 1,3-1,86 г/л, гидрокарбанатно-сульфатным натриевым составом, высокой термальностью(45-59єС).

В настоящее время термальная вода используется на хозяйственно-бытовые цели: баня, детский сад, водоснабжение жилого сектора.

Дебиты скважин составляют 50 мі/сут, работают они на фонтанном режиме, избыточные давления на устьях скважин 1,4-1,9 атм. Годовая добыча термальных вод по Каякентскому водозабору составляет 77,5 тыс.мі.

Месторождение Кизляр

Кизлярское месторождение высокопотенциальных термальных вод расположено в пределах города.

По геологическим условиям Кизлярское месторождение относится к типу пластовых с относительно простыми гидрогеотермическими условиями.

Воды высокотемпературные (отложения чокракского возраста), температура на устье скважин 100-104єС.

Кизлярский водозабор представлен 17-ю скважинами, из которых 7- добычных, 2-нагнетателбные, 4-наблюдательные, 4- в простое.

Чокракский водоносный горизонт-5 скважин (№№ 1т, 3т, 5т, 17т, 21т), эксплуатационные дебиты 1000-2500 мі/сут, температура 99-100єС, минерализация 1,83-9,2 г/л, избыточное давление на устье 7-14 атм.

Месторождение Кардоновка

Расположено в Кизлярском районе в 10км к юго-востоку от г. Кизляра, в пределах с. Кордоновка.

В эксплуатации находится одна скважина № 4т, подающая термальную воду из апшеронского горизонта. На базе этой скважины функционирует колхозная баня и организован розлив столовой воды, дебит до 25 мі/сут, температура воды на устье скважин 40єС, минерализация 2,18г/л, избыточное давление 6,0 атм.

3

Рис 2. Принципиальная интегрированная схема использования геотермальных вод:

1 - добывающая скважина? 2 - выработка электроэнергии? 3 - холодильные процессы? 4 - теплицы? 5 - тепловая насосная установка? 6 - промышленные процессы? 7 - лесопильные предприятия? 8 - производство продуктов питания? 9 - дегидратация? 10 - сушка зерна? 11 - корм скота? 12 - центральное отопление и горячее водоснабжение? 13 - обогрев почвы и полив сельхозугодий? 14 - рыборазведение? 15 - химическое производство? 16 - бальнеолечение и бассейны? 17 - нагнетательная скважина.

2.2 Современное состояние и перспективы развития геотермальной энергетики

Мировой потенциал изученных на сегодня(2006 год) геотермальных ресурсов составляет 0,2 ТВт электрической и 4,4 ТВт тепловой мощности. Примерно 70% этого потенциала приходится на месторождения с температурой флюида менее 130?С.

Последние годы характеризуются резким увеличением объемов и расширением областей использования геотермальных ресурсов.

Новейшие энергетические технологии с использованием геотермальных ресурсов отличаются экологической чистотой и по эффективности приближаются к традиционным.

На современных ГеоЭС коэффициент использования мощности достигает до 90%, что в 3-4 раза выше, чем для технологий с использованием других ВИЭ (солнечной, ветровой, приливной). На ГеоЭС, использующих ГЦС-технологию и бинарный цикл (БЭС), полностью исключаются выбросы диоксида углерода в атмосферу, что является важнейшим экологическим преимуществом таких энергетических установок.

В последние годы быстрыми темпами развиваются технологии прямого использования геотермальных ресурсов в теплоснабжении, За последние 15 лет суммарная тепловая мощность геотермальных систем теплоснабжения увеличилась более трех раз и достигла 28 ГВт.

В таких системах в качестве первичного источника тепла используется низкопотенциальная (Т=55єС) термальная вода и петротермальная энергия верхних слоев земной коры. Общая установленная мощность теплонасосных систем слставляет 15,723 ГВт, при годовой выработке тепла 86673 ТДж. Наибольшее развитие технологии теплонасосных систем получила в США, Германии, Канаде.

Россия располагает не только большими запасами органического топлива, но и также и геотермальными ресурсами, энергия которых на порядок превышает весь потенциал органического топлива. Использование тепла Земли в России может составить до 10% в общем балансе теплоснабжения, На территории России разведано 66 геотермальных месторождений с производительностью более 240 000 мі/сут термальных вод и более 105 000 мі/сут парогидротерм. Пробурено свыше 4000 скважин для использования геотермальных ресурсов.

В настоящее время проблемами использования тепла земли занимаются около 50 научных организаций, которые находятся в ведении Российской академии наук и ряда министров.

Чтобы обеспечить высокую экономическую эффективность термальных вод необходимо максимально использовать тепловой потенциал, чего можно достигнуть при комплексном использовании этих вод. Примером комплексного использования термальных вод служит Мостовское месторождение в Краснодарском крае. Необходимо отметить, что эксплуатация большинства геотермальных месторождений ведется на достаточно низком уровне. Зачастую после потребителя, термальные воды сбрасываются с Т = 50-70єС. Полезно используется примерно 1/5 теплового потенциала термальной воды.

Из-за ошибочных технических решений (прямая подача потребителю воды, не соответствующей по химическому составу установленным нормам и т.д.) использование термальных вод во многих случаях было скомпрометировано.

Низкий уровень эксплуатации месторождений и огромная разница между значительными запасами геотермальной энергии и малой ее используемой частью объясняется некоторыми специфическими факторами, характеризующими эту энергию, а также технологией ее извлечения и использования.

Такими факторами являются:

* высокая стоимость скважин и низкие транспортабельные качества термальных вод;

* необходимость обратной закачки отработанных вод и значительные расходы на их подготовку;

* невозможность аккумулирования тепловой энергии на длительный период;

* коррозионно-агрессивные свойства;

* одноразовость использования термальных вод в системе теплоснабжения и сравнительная их температура.

В связи с этим возникают научно-технические и технологические проблемы геотермальной энергетики, основными из которых являются:

* освоение технологий строительства высокодебитных скважин с горизонтальными столами в продуктивном горизонте;

* перевод бездействующих скважин на выработанных нефтяных и газовых месторождениях для добычи геотермального флюида;

* широкое освоение ГЦС (геотермальных циркуляционных систем);

* разработка эффективных методов борьбы с коррозией и солеотложением;

* разработка эффективных технологий утилизации низкопотенциального геотермального тепла.

Области применения и эффективность использования геотермальных вод зависят от их энергетического потенциала, общего дебита и запаса скважин, химического состава, минерализации, агрессивных вод, наличия потребителя и т.д.

Наиболее эффективной областью применения геотермальных вод является отопление, горячее и техническое водоснабжение объектов различного назначения. Максимальный энергетический эффект достигается созданием специальных систем отопления с повышенным перепадом температур.

Сегодня используется 3,5% мирового геотермального потенциала для выработки электроэнергии и только 0,2% - для получения тепла.

В зависимости от температуры геотермальные ресурсы широко используются в электроэнергетике и теплофикации, промышленности, сельском хозяйстве, бальнеологии и других областях.

К началу 2005г. ГеоЭС работают в 24 странах мира, а суммарная установленная мощность их достигла 8910,7 МВт. Лидерами по установленной электрической мощности ГеоЭС являются США- 2544 МВт, Филиппины- 1931, Мексика- 953, Индонезия- 797, Италия- 790, Япония- 535, Новая Зеландия-435, Исландия- 200 МВт. Годовая выработка электроэнергии на ГеоЭС мира в 2004г. Составила 56 798 ГВт ч.

В последние годы активно развиваются геотермальные системы теплоснабжения на основе тепловых насосов.

Примерно 58% общей мощности геотермальных тепловых систем в мире приходится на теплонасосные системы. Общая установленная мощность теплонасосных систем составляет 15723 МВт, при годовой выработке тепла 86673 ТДж. Наибольшее развитие эти технологии получили в США, Германии, Канаде.

Благодаря переводу экономики на геотермальные ресурсы Исландия превратилась в развитую страну с высоким уровнем жизни. Более 87% теплоснабжения в Исландии осуществляется на геотермальном тепле, а в ближайшее время планируется довести до 92%. Примером успешной реализации крупного проекта является создание системы геотермального теплоснабжения г.Рейкьявика, которая обеспечивает около 99% потребностей в тепле. Данная система потребляет 2348л/с геотермальной горячей воды температурой 86…127?С (см. рис. 3).

Геотермальная энергетика в бывшем СССР стала развиваться с середины 60-х годов прошлого столетия, когда впервые были созданы Северокавказская разведочная экспедиция по бурению и реконструкции нефтегазовых скважин на термальные воды.

С 1970 по 1990 годы добыча термальной воды была увеличена в 9 раз, а природного пара в 3,2 раза. В 1990г. Было добыто 53млн.мі термальной воды и 413 тыс.т приридного пара.

Россия располагает большими геотермальными ресурсами, энергия которых на порядок превышает весь потенциал органического топлива.

На территории России разведано 66 геотермальных месторождений с производительностью более 240тыс.мі/сут термальных вод и более 105тыс.т/сут парогидротерм. Пробурено свыше 4000 скважин для использования геотермальных ресурсов.

Наиболее перспективными для освоения геотермальной энергии являются Камчатско-Курильский, Западно-Сибирский и Северо-Кавказский регионы.

На Северном Кавказе хорошо изучены геотермальные месторождения, залегающие на глубинах от 300 до 5000 м.

3

Рис. 3. Принципиальная схема организации теплоснабжения в г. Рейкьявике: (1- добычные геотермальные скважины; 2- деаэраторы; 3- насосная станция; 4- аварийные (резервные) баки; 5- пиковая котельная; 6- потребители тепла; 7- нагнетательный канал).

Температура в глубоких резервуарах достигает до 180°С и выше. Эти месторождения способны обеспечить получение до 10000 тепловой и 200 МВт электрической мощности.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.