Рефераты. Гигантская рябь течения

table>

Район

р. Сев. Татл, Вашингтон

р. Медина, Техас

Колумбийское плато

Алтай

Источник

Dinehart, 1992

Baker and Kochel, 1988

Baker, 1973; Baker&, Nummedal, 1978

Baker, Benito Rudoy, 1993; Rudoy, Baker, 1993

Дата

Декабрь, 1989

Август, 1978

Плейстоцен

Плейстоцен

Длина волны, м

6-15

80

120

200

Высота волны, м

0.2

3

6

20

Глубина

потока, м

1,4

10

100

400-500

Средняя скорость течения, м/с

2.5

3.5

18

32.5

Напряжение сдвига ложа, н/м2

100

300

1800

до 20000

Мощность, вт/м2

250

1000

32000

до 1000000

Расход, м3

175

7000

10000000

свыше 18000000

Чередование гранулометрически разнородных слоев и горизонтов в строении паводковых дюн можно объяснить комбинацией механизмов периодического оползания крупнообломочного материала, накапливающегося в пригребневой части дистального слоя, флуктуацией потока и короткопериодическими изменениями гранулометрии влекомых наносов. П.Э. Карлинг полагает, что поскольку падение слоистости в паводковых дюнах близко к состоянию покоя, то гряды в русле перемещались в основном не обваливанием и оползанием, а перекатыванием подвижных слоев через изгиб в вершине гребней и отложением их на дистальном склоне.

Для роста ряби в условиях соответствующего потока требуется очень небольшие интервалы времени. Р.Б. Дайнхарт на примере рек северо-запада США установил, что при высоте гребней речных дюн в пределах 0,2 - 0, 4 м их длина увеличивается до 30 м за 1 - 2 суток. Т.К. Густавсон, все же можно предположить, что и формирование рельефа гигантской ряби течения в дилювиальных потоках происходило очень быстро.

Сейчас же пока можно сделать предварительный вывод о том, что гигантские знаки ряби течения являются русловыми формами, которые не могут быть сопоставлены непосредственно из наблюдений ни в современных ущельях и небольших разветвленных реках, ни в больших зрелых речных долинах.

Завершая этот раздел, отмечу, что в настоящее время ни в одной стране не разработана классификация гигантских знаков ряби течения подобная тем, которые имеются для мелкой речной ряби. Эта работа по генетическому разделению дилювиальных фаций еще впереди и, по-видимому, лежит в русле «потопной седиментологии» Пола Карлинга.

Определения

Гигантская рябь течения - это активные русловые формы рельефа высотой до 20 м, образованные в околотальвеговых участках пристрежневых частей магистральных долин дилювиального стока. В плане образуют серповидные или извилистые гряды длиной от первых метров до километров, разделенные мульдообразными понижениями с частыми перемычками. Гигантские знаки ряби течения состоят из косослоистых промытых гравийно-галечниковых отложений с участием окатанных валунов и глыб. Гигантские знаки ряби являются морфологическим и генетическим макроаналогом мелкой песчаной ряби течения. Гигантские знаки ряби течения имеют асимметричную в поперечном профиле форму «китовой спины», где более пологий слабовыпуклый к гребню склон обращен навстречу течению палеопотока, а более крутой, слабовогнутый в пригребневой части, склон, находится в зоне относительной русловой тени.

Гигантская рябь течения является важнейшим звеном группы аккумулятивных форм парагенетической ассоциации дилювиального морфолитокомплекса горных и равнинных скэблендов.

Скэбленд - это территории ледниковой и приледниковой зон, подвергающиеся или подвергавшиеся ранее многократному воздействию катастрофических паводков из ледниково-подпрудных озер, оставивших оригинальные эрозионные, эворзионные и аккумулятивные природные образования, по которым возможно определить гидравлические параметры водных потоков, реконструировать историю скэбленда и дать прогноз. Скэбленд - это площадь, рассеченная параллельными ложбинами, изобилующая каплевидными в плане холмами, водобойными котлами и следами кавитации; геоморфологический ландшафт, созданный гидросферной катастрофой.

Определения «скэбленда» возможно расширить в связи с марсианскими открытиями и в связи с разработкой геофизического эффекта подледных извержений вулканов. В этом аспекте происхождение скэблендов целесообразно связывать также и с внезапным таянием криосферы и катастрофическими прорывами вод под мерзлотой и между ее слоями как на Земле, так, в частности, и на планете Марс.

Позднечетвертичная гляциогидрология и гидравлические характеристики дилювиальных потоков

Палеогидрология

Только на территории Горного Алтая общая площадь ледниково-подпрудных озер, подсчитанная по высотному положению сохранившихся береговых линий, спиллвеев и кровле озерных отложений, составляла в позднем плейстоцене не менее 27 тыс. км2, а суммарный объем достигал 7, 3 тыс. км3. В целом же в горах Южной Сибири по предварительным оценкам эти параметры составляли, соответственно, 100 тыс. км2 и 60 тыс. км3.

Самыми крупными ледниково-подпрудными озерами из изученных были Чуйское и Курайское, которые на определенном этапе их эволюции, на стадиях деградации последнего оледенения, представляли собой единый Чуйско-Курайский ледниково-подпрудный водоем. Обнаруженные во время полевых работ 1984 г. на абсолютных отметках свыше 2400 м новые перевалы-спиллвеи из Курайской котловины в бассейн р. Чаган-Узуна и из Чуйской - в бассейн р. Башкауса, а также комплекс дилювиальных валов на перевале Кызыл-Джалык - Кызыл-Чин и Кызкынор, показали, что рекордные объемы Чуйско-Курайской системы ледниково-подпрудных озер могли достигать 3500 км3, т.е. были гораздо больше максимальных объемов оз. Миссула.

Характерные для горных систем Центральной Азии большие межгорные котловины, окруженные высокими хребтами, несущими мощное оледенение, в ледниковое время представляли собой систему сообщающихся водоприемников, сток из которых осуществлялся по крупнейшим дренажным системам, на Алтае - по долинам Чуи, Чулышмана, Башкауса, Катуни, Бии, и, вероятно, Джасатера-Аргута. Это установлено по комплексу дилювиальных образований в этих долинах, но главным образом - по местонахождениям рельефа гигантских знаков ряби течения.

В случае повышенной мощности ледниковых плотин в каналах стока регулирование запасов воды в водоприемниках происходило путем частичной водоотдачи через дренажные каналы низших порядков - перевальные седловины в соседние бассейны. Сброс части вод через спиллвеи Тобожок-Башкаус должен был вызывать катастрофическое опорожнение ледниково-подпрудных озер в долинах рр. Башкауса, Улаганов и Кубадру. Прорывы Чуйского, Курайского или Уймонских озер провоцировали сбросы воды из Яломанской впадины. Эта озерно-дренажная сеть была чрезвычайно динамичной. Каждый очередной сброс или всех озерных вод, или их излишков немедленно компенсировался интенсивным талым стоком с ледников горного обрамления.

Короткопериодические опорожнения и заполнения котловин накладывались на озерно-ледниковые макроритмы длительностью в десятки тысяч лет, на всех этапах эволюции озер за исключением тех промежутков времени, когда поверхность озер вовлекалась в область питания ледников и возникали наледные ледоемы и «пойманные озера». На начальных и конечных стадиях оледенений, когда ледниковые плотины были маломощными и неустойчивыми, опорожнения происходили за счет прорывов или всплывания плотин. В остальных случаях излишки воды сбрасывались через спиллвеи, а также поверх плотин, которые в итоге опять-таки прорывались.

В магистральных долинах стока из некоторых котловин имеются фрагменты отложений подпруживавших озера ледников. Эти морены приурочены к створам участков прорыва на разных гипсометрических уровнях каналов при выходе из котловин. Фрагменты морен встречаются и на бортах каналов стока ниже участков прорыва. Такие образования специально изучались автором в долине Чуи между Чуйской и Курайской впадинами, ниже Курайской впадины, на склонах в урочище Баротал, в долине р. Катуни ниже урочища Сок-Ярык, в долине р. Чулышмана, в долине р. Ванча в Горном Бадахшане и в других местах. В.В. Бутвиловский и Г.Г. Русанов изучали эти образования в бассейне р. Башкауса, а М.Г. Гросвальд - в большинстве ледниковых районов мира.

Противники теории дилювиального морфолитогенеза утверждают, что если бы ледниково-подпрудные озера сбрасывались катастрофически, то дилювиальные потоки эродировали бы весь рыхлый материал в нижележащих долинах.

Во-первых, иной, не катастрофический, сценарий разгрузки ледниково-подпрудных озер в настоящее время неизвестен. Во-вторых, многочисленные современные примеры в самых разных районах планеты показывают, что ледниково-подпрудные озера способны продуцировать катастрофические паводки и без полного уничтожения подпруживающих ледников и их фронтальных морен.

Очевидно, что и сбросы Чуйского, Курайского, Уймонского и других озер в направлении магистральных долин на стадиях последней дегляциации, когда озера уже не достигали максимальных объемов в связи с уменьшением талого стока и маломощностью плотин, происходили главным образом по внутри- и окололедниковым каналам и полостям, а также - по подледниковым спиллвеям. Полного уничтожения плотин на этих этапах не происходило.

Таким образом, например, было спущено в сентябре 1982 г. оз. Стрэндлайн на Аляске. Это озеро имело объем 7 108 м3. Скорости дилювиального потока были оценены авторами статьи в 14 м/с. После катастрофического сброса озера, которых длился 5 часов, внутриледниковые каналы стока оставались открытыми еще около года, после чего закрылись.

У. Мэтьюз сообщает о механизме катастрофического прорыва ледниково-подпрудного оз. Саммит в декабре 1965 г.. Это озеро было спущено по внутриледниковому туннелю правильно формы с максимальным диаметром 13,1 м и длиной почти 13 км. Максимальный расход воды составлял 3200 м3/с.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.