Рефераты. Магнитная восприимчивость, плотность и электропроводность. Месторождение Миссури

Магнитная восприимчивость, плотность и электропроводность. Месторождение Миссури

Курсовая работа

Магнитная восприимчивость, плотность и электропроводность.

Месторождение Миссури

2010

Содержание

  • Введение
    • Глава 1. Повышенная магнитная восприимчивость парамагнитных амфиболов, пироксенов, биотитов связана с микропримесями ферромагнетиков. Предложите магнитные способы определения в этих минералах ферромагнетиков?
    • Глава 2. Распределение минералов по петрофизическим группам
    • Глава 3
    • Глава 4. Петрографическая характеристика месторождения Миссури (Pb-Zn)
    • Глава 5. Meдно-порфировые месторождения
    • Глава 6. Специальное исследование
    • Заключение
    • Список используемой литературы
Введение

Петрофизика - одна из наук о Земле, изучающая физические свойства горных пород и руд с целью установления их состава структуры и термодинамического состояния при решении разнообразных задач геологии.

Петрофизика играет роль фундаментальной науки по отношению ко всем частным направления геофизики: магниторазведке, гравиразведки, электроразведке, сейсморазведке и радиометрии, а также к методам гис.

Современная петрофизика использует ряд современных методов исследования веществ, позволяющих с высокой точностью и воиспроизводимостью измерять большое количество разнообразных параметров горных пород. К ним относятся: плотность, различные виды пористости, магнитная восприимчивость, остаточная намагниченность, удельное электрическое сопротивление, диэлектрическая проницаемость, тепло - и температуропроводности, теплоемкость и т.д.

Несомненное достоинство петрофизических методов исследований является возможность опосредственного изучения вещества Земли на любых глубинах с помощью каротажа и тонкие скрупулезные лабораторные измерения горных пород и руд на образцах.

Глава 1. Повышенная магнитная восприимчивость парамагнитных амфиболов, пироксенов, биотитов связана с микропримесями ферромагнетиков. Предложите магнитные способы определения в этих минералах ферромагнетиков?

Ответ:

Парамагнетизм - это явление, возникающее в веществах с некомпенсированными магнитными моментами и отсутствием магнитного атомного порядка. Атомы или молекулы в этом случае можно представить в виде элементарных магнетиков. При отсутствии внешнего магнитного поля упорядоченному расположению этих магнетиков препятствует тепловое движение, энергия которого на порядок выше энергии взаимодействия между магнетиками. Поэтому при обычных температурах магнитные моменты разупорядочены и результирующая намагниченность равна нулю.

Внешнее магнитное поле ориентирует магнитные моменты атомов. Направление преимущественной ориентация совпадает с направлением намагничивающего поля, поэтому намагниченность и магнитная восприимчивость у парамагнетиков являются положительными величинами.

Состояние, когда все элементарные магнитные моменты оказываются ориентированы параллельно внешнему магнитному полю, является предельным и может быть достигнуто лишь при очень низких температурах или в очень сильных полях. Соответствующая этому состоянию намагниченность насыщения J° зависит лишь от магнитных моментов атомов и их количества в единице объема.

В обычных условиях ориентации магнитным полям магнитных моментов атомов препятствует их тепловое движение. Поэтому намагниченность меньше намагниченности насыщения.

К парамагнетикам относится большая группа минералов, в том числе породообразующих. Безжелезистые минералы (плагиоклазы, калиевые полевые шпаты, мусковит, скаполит, шпинель, топаз, апатит и др.) имеют относительно низкою магнитную восприимчивость не превышающую 10-0,00001 ед. Парамагнитная восприимчивость железосодержащих силикатов алюмосиликатов (биотиты, амфиболы, хлориты, пироксены, оливины) связана главным образом с содержанием в них ионов железа. В химически чистых разностях оно достигает 200,00001 ед. СИ. Более высокие значения магнитной восприимчивости этих минералов, образованных в естественных условиях, обусловлены микропримесями в них ферромагнетиков, в основном - магнетита (рис.4.4).

Как мы знаем даже не значительные примеси ферромагнетика (магнетита) заметно отклоняют магнитную стрелку компаса.

Для диагностики ферромагнитных минералов пользуются параметрами коэрцитивного спектра г0 и Дm вычислены таким образом, чтобы они не зависели от концентрации ферромагнетика в породе.

го = 103/Ji * c/d Дm = 103/Ji * (ДJо/Дh) max

где Ji и Jо - индукционная и остаточная намагниченности; h - магнитное поле; с и d отрезки, поясняющие определение параметра по кривой коэрцитивного спектра (рис.4.13)

В общем случае параметры коэрцитивного спектра зависят как от состава ферромагнетика, так и от его структурных особенностей. На диаграмме рис.4.14 приведены эталонные данные для основных разновидностей ферромагнитных минералов. Использовались породы с изометричными многодоменными включениями этих минералов. Структурные особенности могут повлиять на параметры коэрцитивного спектра, что затруднит идентификацию минералов по составу. Так, уменьшение зерна магнетита от 10 до 0,1 мкм увеличивает параметр Дm более чем в 2 раза, оставляя го практически неизменным. Удлинение же зерна магнетита в два раза по сравнению с изометричиым зерном приводит к возрастанию обоих и параметров тоже почти в два раза.

Вопрос 10,6: В чем может быть причина отличия по плотности пород Русской (Восточно-Европейской) и Западно-Сибирской платформ?

Ответ:

Петрофизическая классификация геологических формации составлена Н.Б. Дортман. В ее основу положены значения двух физических параметров - намагниченности и плотности горных пород, входящих в состав геологической формации. О скоростях распространения упругих колебаний горных пород выделенных групп можно судить по корреляционным зависимостям между этим параметром и плотностью. Геологические формации распределены по пяти петрофизическим рис. №2. группам, различающимся как значениями физических параметров пород, так и условиями их образования.

Формации литифицированных осадочных пород наиболее полно представлены и пределах Русской платформы и связаны с палеозойским этапом ее развития (см. рис.2). Плотность пород терригенных формаций здесь преимущественно 2,3-2,4 г/см3, карбонатных - 2,55-2,6 г/см3. Более древние (нижнепалеозойские) карбонатные формации Сибирской платформы имеют более высокие плотности - 2,65-2,85 г/см3. Наибольшими плотностями соответствующих литологических разностей пород отличаются геосинклинальные отложения складчатых систем (2,5 - 2,85 г/см3).

Намагниченность осадочных формаций слабая, в основном не выходящая за пределы (0-50) - 103 А/м. Наблюдается некоторая дифференциация отдельных разностей пород по вариациям предельных значений намагниченности. В целом намагниченность формаций слаболитифицированных пород изменяется в меньших пределах, чем намагниченность литифицированных пород, а вариации предельных значений намагниченности пород складчатых областей выше, чем платформ.

Кислые и умеренно кислые интрузивные и эффузивные образования первой петрофизической группы характеризуются средней плотностью и слабой намагниченностью. В нее входят гранитовая и липаритовая формации, формация гранито-рапакиви, а также часть гранитоидных формаций. Этими образованиями сложены крупные баталитоподобные массивы в центральных частях антиклинорных зон, протяженные вулканогенные пояса. Наиболее широко эти группы интрузивных и эффузивных формаций развиты в палеозойских и мезозойских геосинклинально-складчатых системах.

Петрофизические группы геологических формаций, отличающиеся особенностями петрофизической характеристики пород, слагают различные крупные геоструктуры земной платформы, геосинклинально складчатые пояса, щиты, что определяет петрофизическую обособленность этих геоструктур. Из рис.2 можно видеть, что платформы по петрофизическим особенностям отличаются от геосинклинально-складчатых поясов и кристаллических щитов, молодые платформы отличаются от древних, а Сибирская платформа имеет уникальную петрофизическую характеристику в связи с широким развитием в ней трапповой базит-долеритовой формации (IV петрофизическая группа). Складчатые системы и кристаллические щиты выделяются как в среднем более высокими значениями плотности и намагниченности, так и большим диапазоном изменения этих параметров в сравнении с платформами.

Петрофизическая классификация геологических формаций, из-за большого разнообразия горных пород в каждой формации и перекрытия интервалов значений плотности и намагниченности носит ориентирующий характер. Однако в привязке к любому конкретному региону она становится значительно более определенной и существенно помогает решать разнообразные задачи геологического картирования.

Иными словами можно сказать, что плотность пород этих платформ, да впрочем как и других различается в том какими геологическими формациями пород и какими петрофизическими группами пород сложены платформы.

Глава 2. Распределение минералов по петрофизическим группам

Проводники, с<10-6

Железо

Fe

(9-12) 10-8

металлическая

Никель

Ni

(6-7) 10-8

металлическая

Медь

Cu

1.610-8

металлическая

Серебро

Ag

1.510-8

металлическая

Платина

Pt

9.810-8

металлическая

Ртуть

Hg

9510-8

металлическая

Золото

Au

210-8

металлическая

Висмут

Bi

(12-14) 10-8

металлическая

Полупроводники с повышенной электропроводностью, 10-6<с<102

Касситерит

SnO2

10-3 - 104

ионно-ковалентная

Куприт

Cu2O

10-1 - 100

ионно-ковалентная

Ильменит

FeTiO2

10-3 - 100

ионно-ковалентная

Титаномагнетит

Fe (Fe3+, Ti) 2O4

10-4 - 100

ионно-ковалентная

Уранинит

UO2

10-2 - 101

ионно-ковалентная

Гематит

б-Fe2O3

10-1 - 102

ионно-ковалентная

Графит

С

10-4 - 100

ковалентно-металлическая

Пирит

FeS2

10-5 - 100

ковалентно-металлическая

Галенит

PbS

10-5 - 100

ковалентно-металлическая

Сфалерит

ZnS

10 - 104

ковалентно-металлическая

Халькопирит

CuFeS2

10-4 - 10-1

ковалентно-металлическая

Пирротин

FeS

10-6 - 10-4

ковалентно-металлическая

Арсенопирит

FeAsS

10-5 - 10-1

ковалентно-металлическая

Ковелин

CuS

10-5 - 10-1

ковалентно-металлическая

Борнит

Cu2FeS4

10-5 - 10-1

ковалентно-металлическая

Магнетит

Fe3O4

10-5 - 10-2

ковалентно-металлическая

Хромит

(Fe,Mg) (Cr,Al,Fe) 2O4

3101

ковалентно-металлическая

Пиролюзит

MnO2

10-3 - 101

ковалентно-металлическая

Полупроводники с пониженной электропроводностью, 102<с<108

Шеелит

CaWO4

106 - 108

ионная

Антимонит

Sb2S3

104 - 106

ионно-ковалентная

Шпинель

MgAl2O4

104 - 106

ионно-ковалентная

Рутил

TiO2

4102

ионно-ковалентная

Молибденит

MoS2

103 - 102

ковалентная

Лимонит

FeOOH+FeOOH*nH2O

102 - 106

ионно-ковалентная

Касситерит

SnO2

10-3 - 104

ионно-ковалентная

Сфалерит

ZnS

101 - 104

ковалентно-металлическая

Киноварь

HgS

106 - 1010

ковалентно-металлическая

Диэлектрики, с>108

Флюорит

CaF2

1014 - 1015

ионная

Галит

NaCl

1014 - 1018

ионная

Сильвин

KI

109 - 1015

ионная

Кальцит

CaCO3

109 - 1014

ионная

Доломит

CaMg (CO3) 2

107 - 1016

ионная

Арагонит

CaCO3

107 - 1014

ионная

Кварц

SiO2

1012 - 1016

ионно-ковалентная

Корунд

Al2O3

1014 - 1015

ионно-ковалентная

Сера

S

1012 - 1015

ковалентная

Ортоклаз

K [AlSi3O8]

1010 - 1014

ковалентная

Анортит

Ca [AlSi3O8]

1010 - 1014

ковалентная

Биотит

K [AlSi3O8]

1012 - 1015

ковалентная

Роговая обманка

NaCa2 [Al2Si6O22]

108 - 1014

ковалентная

Актинолит

Ca2Mg3 (OH) [Si8O22]

108 - 1014

ковалентная

Хлориты

- // - // - // - // -

109 - 1012

ковалентная

Эпидот

Ca2 (Fe, Al3O (OH) [SiO4] [Si2O7]

109 - 1014

ковалентная

Авгит

(Ca,Mg,Fe) [ (Al,Si) 2O6]

109 - 1014

ковалентная

Оливин

(Mg,Fe) 3SiO4

108 - 1010

ковалентная

Киноварь

HgS

106 - 1010

ковалентно-металлическая

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.