Рефераты. Минералогия, петрография и кристаллография

p align="left">Наиболее распространенным из них является апатит Ca5[PO4]2(F,Cl,OH) (греч. «апатио» - обманываю). Встречается почти во всех типах горных пород, но в виде одиночных мелких кристаллов и зерен. В промышленных концентрациях апатит встречается в щелочных магматических породах, являясь совместно с нефелином одним из главных породообразующих минералов (в нефелиновых сиенитах). Здесь он образует частую вкрапленность зерен и почти сплошные зернистые сахаровидные массы, где содержание апатита достигает 80%.

В осадочных горных породах апатит слагает конкреции, желваки и землистые массы. Обычно содержит примеси песчаных и глинистых частиц, представляя собой по существу породу. Такие горные породы называются фосфоритами. Их происхождение биогенное - в результате жизнедеятельности организмов. Нередки псевдоморфозы фосфоритов по ископаемым остаткам.

Апатит и фосфориты широко используются для производства фосфорных удобрений, в химической промышленности.

Общие сведения о минералах класса фосфатов:

В этом классе объединены минералы, представляющие собой в основном соли фосфорной, мышьяковой и, в меньшей степени, ванадиевой кислот. Для многих фосфатов и их аналогов характерны изоморфные замещения как в катионной, так и в анионной части. Все они относятся к одному типу структуры - островному. Поэтому габитус кристаллов преимущественно изометричный.

Безводные минералы обладают более высокой твердостью, чем водные (со слоистыми мотивами островов). С содержанием ионов-хромофоров связана их различная окраска.

Минералообразование фосфатов часто имеет гетерогенный характер (может образовываться при различных процессах). Отсюда и разные формы образования кристаллов и большое содержание редких примесей. Яркие цвета некоторых минералов используются в качестве поискового признака на руды урана, кобальта, никеля и др.

К этому классу относится сравнительно большое число разнообразных по составу минеральных видов. Общее весовое количество их в земной коре, однако, относительно невелико.

3. Обломочные осадочные породы

Осадочные горные породы широко распространены в верхних частях земной коры. Эти горные породы являются продуктом разрушения других пород, а также результатом жизнедеятельности организмов и выпадания из воздушной или водной среды материалов любого происхождения.

Осадочные породы в зависимости от условий их образования делят на три группы: обломочные, химические, органогенные.

Обломочные породы образовались в результате механического разрушения других под действием ветра, воды, суточных и сезонных колебаний температуры воздуха. К обломочным породам относят щебень, гальку, гравий, песок. В природных условиях рыхлые обломочные породы могут подвергаться связыванию частицами глины и других пород, образуя сцементированные обломочные породы. К ним относятся песчаники, алевролиты, аргиллиты, конгломераты, а также другие породы.

Обломочные породы возникают из механических обломков пород:

· несцементированных (глины, пески, гальки, щебни);

· сцементированных (аргиллиты, алевролиты, песчаники, брекчии, конгломераты).

Новые минералы в результате этого процесса не образуются.

Обломочные породы являются наиболее распространенными среди осадочных пород. Классификация обломочных пород основана на величине обломков. Выделяют следующие виды обломочных пород:

1. Крупнообломочные породы или псефиты - размер обломков более 1 мм. Это валуны, галька, гравий и другие.

2. Среднеобломочные породы или псаммиты - размер зерен от 0,1 до 1,0 мм. Это пески и песчаники.

3. Мелкообломочные породы или алевриты и алевролиты - размер зерен от 0,01 до 0,1 мм. Это лесс, лессовидные суглинки.

4. Тонкодисперсные глинистые породы или пелиты - размер зерен менее 0,01 мм. Это различные глины.

Галечник образуется при переносе обломков водными потоками или в результате прибоя. В процессе переноса обломки окатываются, приобретая хорошо отполированные округлые формы. Галечник имеет размер галек от 10 до 100 мм, гравий - от 1 до 10 мм. Мелкий гравий называют так же грубым песком. По своему происхождению галечник и гравий могут быть речными, озерными, морскими, ледниковыми.

Брекчия представляет собой сцементированные неокатанные обломки, размер которых более 2 мм. Цемент может быть различный, а обломки как однородные, так и неоднородные по составу.

Конгломерат - сцементированный галечник и гравий. Состав гальки и цемента может быть различный.

Пески по величине зерна разделяются на крупнозернистые (0,5 - 1,0 мм), среднезернистые (0,25 - 0,5 мм) и мелкозернистые (0,1 - 0,25 мм). Минеральный состав их различен. Наиболее распространенным минералом песков является кварц. Часто встречаются чисто кварцевые пески. По своему происхождению пески могут быть речными, морскими, озерными. Степень окатанности зерен различная: от угловатых до хорошо окатанных (морские пески). В зависимости от того, сколько минералов входит в состав песка различают мономинеральные, состоящие из одного минерала, и полимиктовые пески, состоящие из нескольких минералов.

Песчаники представляют собой сцементированные пески. Среди них выделяют те же разновидности, что и у песков. В определение песчаников обычно включают так же состав цемента: известковый, глинистый, кварцевый, битуминозный и другие.

Лесс - это однородная порода, состоящая из кварца, глины и кальцита. Кварц составляет примерно 50%, глина 20% и более, кальцит - 20-30%. В небольших количествах присутствуют некоторые другие минералы. Для лесса характерна высокая пористость и водопроницаемость. Лесс легко растирается в пыль.

Алевролиты представляют собой сцементированный лесс. Они похожи на глинистые породы. Имеют преимущественно известковый или кремнистый цемент. В обнажениях иногда слоисты. В воде не размокают.

Глины - наиболее тонкодисперсные осадочные породы. В сухом виде они характеризуются землистым строением и легко растираются пальцами. При впитывании влаги глины становятся вязкими и пластичными, при высыхании сохраняют приданную им форму, а после обжига приобретают высокую твердость. Глинистые пласты водоупорны. По происхождению выделяют остаточные глины, образовавшиеся на месте разрушения пород, и осадочные или переотложенные глины, образующиеся в результате отложения из воды тонковзмученного материала. Среди осадочных глин различают глины морские и континентальные. По минеральному составу среди глин выделяются каолинитовые, монтмориллонитовые и другие разновидности. Глины часто содержат примесь кварца, халцедона, опала и гидроксидов железа.

В природе широко распространены смешанные песчано - глинистые породы. К ним относятся супеси и суглинки. Супеси содержат до 20 - 30% глинистых частиц, суглинки до 40-50%.

4. Месторождения графита. Общие сведения про минерал. Характеристика генетических типов месторождений. Пример месторождений

Помимо широко распространенных в природе соединений с кислородом (карбонатов) и с водородом (углеводородов), углерод присутствует в самородном виде, образуя две полиморфные разновидности - графит и алмаз, идентичные по своему составу, но резко отличающиеся по структуре и физическим свойствам.

Графит кристаллизуется в гексагональной сингонии; его слоистая кристаллическая структура характеризуется весьма крепкой ковалентной гомеополярной связью атомов углерода в пределах слоя (расстояние между соседними атомами 0,141 нм), но весьма слабой межслоевой молекулярной Ван-дер-Ваальсовской связью (расстояние между слоями 0,335 нм).

Особенность строения кристаллической решетки графита, включая наличие в ней свободных электронов, и обуславливает его физические свойства: весьма совершенную спайность в базальной плоскости, низкую твердость (около 1) вдоль нее, но достаточно высокую в перпендикулярном направлении (около 5,5), низкий коэффициент трения, высокую электропроводность, близкую к металлам, металлический блеск, непрозрачность и др. Важное промышленное значение имеют также высокая теплопроводность (выше, чем у меди и алюминия), огнеупорность, химическая инертность (растворяется лишь в расплавленных силикатах или металлах, образуя карбиды), гидрофобность, исключительно высокая жирность и пластичность, обусловленные легкой расщепляемостью по спайности и способностью прилипать к твердым поверхностям с образованием на них тонких пленок (высокая кроющая способность).

В природе графит встречается в виде рассеянных чешуек, либо их листоватых агрегатов, плотных зернистых агрегатов, либо плотных скрытокристаллических масс. Кроме того, в промышленности все шире используется искусственный (коксовый, доменный, ретортный) графит, специально получаемый из антрацита, нефтяного кокса, а также из отходов доменного производства. Чешуйчатые графиты по диаметру кристаллов разделяются на крупночешуйчатые и мелкочешуйчатые. В литокристаллическом кусковом графите размер кристаллов тот же, что и в мелкочешуйчатом, однако они не ориентированы, что затрудняет расщепление агрегата и сдвиги при деформации. Искусственный графит по качеству приблизительно соответствует чешуйчатому и плотнокристаллическому, отличаясь большей чистотой и меньшей кристалличностью. Выделенные природные разновидности графита не бывают совершенно чистыми; они содержат примеси минералов-спутников, газов, а также непревращенный в графит углерод. При производстве анализов определяют содержание ографиченного углерода (графита), летучих (газов и воды) и золы (минеральные примеси).

Промышленные руды чешуйчатого графита содержат от 2 до 15% (редко более) этого минерала. Они легко обогащаются флотацией с получением концентрата, содержащего 60% и более графита. Еще более обогатимы выветрелые чешуйчатые руды, в которых срастания графита с другими минералами отсутствуют. В плотнокристаллических кусковых pудах массовая доля графита составляет 35-40% и более; без обогащения используется руда, в которой эта величина поднимается до 60-80% Скрытокристаллическая руда (аморфный графит) труднообогатима. Без обогащения используются руды с содержанием углерода около 70%, бедные руды (20-40%) обогащаются ручной разборкой.

Основная масса графита потребляется в качестве огнеупоров (чешуйчатая и плотнокристаллическая разновидности) в основном в черной и цветной металлургии, производстве высокоуглеродистой стали и в литейном деле (для покрытия внутренней поверхности литейных форм, где обычно используют аморфный графит в смеси с огнеупорной глиной, молотой слюдой, тальком или песком). В США на эти три отрасли промышленности приходится более половины потребления графита. Значительное количество графита идет на производство всевозможных смазок, применяемых в водной и иных средах, токопроводящей резины, сухих батарей, электродов, скользящих контактов, деталей ядерных втулок и других изделий. Графит является основным сырьем для промышленного синтеза технических алмазов, находит широкое применение в порошковой металлургии и в производстве реакторов и ракетных двигателей, карандашей, туши, копировальной бумаги, всевозможных реторт, полупроводников.

Различные отрасли промышленности предъявляют свои специфические требования к качеству графитного сырья (руд и концентратов). В настоящее время производятся следующие типы и марки графита: литейный, элементный, электроугольный, аккумуляторный, тигельный, карандашный, смазочный, специальный малозольный, графит для специальных сталей, особо чистый графит для ядерных реакторов и др. Его состав варьирует в широких пределах: 40-97% графита, 0,7-7,5% летучих, 1,75-26,5% золы. Общими лимитирующими показателями являются зольность, влажность, содержание летучих, иногда железа, серы, меди, фосфора и других элементов, а также величина рН водной вытяжки.

Максимальное мировое производство графита (около 950 тыс. т.) зафиксировано в 1989-1990 г. Наиболее крупными продуцентами являются КНР (около 40-45% всего производимого в мире графитового концентрата), далее следуют Республика Корея, Индия, КНДР, Бразилия, Мексика, Канада, Чехия. В странах СНГ наибольшая добыча приходится на Украину и Россию. Преобладающая часть запасов кристаллического графита сосредоточена в КНР, на Мадагаскаре, в Зимбабве, Бразилии и странах CHГ. Свыше 90% запасов скрытокристаллического графита приходится на Мексику, КНР, Россию и Республику Корея. Мировое производство синтетического графита значительно превышает 1,5 млн т и осуществляется в ряде промышленно развитых стран: в США, Канаде, Японии, странах Западной Европы.

В природе имеется три мыслимых источника углерода как исходного материала для образования графита: магматические эманации, карбонатные породы и органические остатки (а также угли) среди осадочных пород.

Все реакции могут реализоваться в глубинных условиях при высоких температурах, отражая возможный механизм формирования собственно магматических, пневматолито-гидротермальных скоплений кристаллического графита.

Может также иметь место и ассимиляция карбонатных пород интрудирующей магмой с обогащением ее углеродом. Таким образом, карбонатные породы могут обусловить появление концентраций кристаллического графита скарнового и магматического генезиса.

Органические остатки осадочных пород при метаморфизме могут превращаться в графит. По мере увеличения степени метаморфизма при определенных условиях органический углерод переходит вначале в аморфный графит (цеолитовая фация), затем через серию промежуточных разновидностей в кристаллический (амфиболитовая фация). Если образование графита шло за счет рассеянного углеродистого вещества, то в результате регионального метаморфизма могли появляться графитистые гнейсы с высококачественным чешуйчатым графитом; в случае концентрированного исходного углеродного вещества (пласты угля или горючих сланцев), подвергшегося контактово-термальному локальному метаморфизму, возможно образование скрытокристаллического (аморфного) графита с сохранением текстур исходных пород, локальных неографиченных участков и примесей других минералов.

Несмотря на наличие значительных собственно магматических, пегматитовых и пневматолито-гидротермальных, скарновых месторождений высококачественного кристаллического графита, основное значение в мировом балансе графитового сырья имеют метаморфогенные месторождения, представленные телами вкрапленных руд чешуйчатого графита в гнейсах, кристаллических сланцах и др. обычно докембрийских метаморфических образованиях, а также пластовыми залежами и линзами апокаменноугольного преимущественно скрытокристаллического графита.

В целом можно говорить о трех главнейших мировых геолого-промышленных типах месторождений графита:

1. Неправильные тела, линзы, штоки и жилы богатых руд высококачественнного плотнокристаллического графита в магматических (чаще сиенитовых), пегматитовых, скарновых и метаморфических кристаллических породах; в этот тип попадают магматические, пегматитовые и пневматолито-гидротермальные, скарновые месторождения, причем их генезис как правило является предметом дискуссий. Сюда относятся месторождения Ботогольское, Шри-Ланки и Индии (в штатах Раджастан, Орисса, Мадрас), Канады (Бакингем и Грейнвилл в провинции Квебек, Блэк-Дональд в провинции Онтарио), США (Стербридж в штате Массачусетс, Диллон в штате Монтана, Тиконгероги в штате Нью-Йорк), Бразилии, Японии (Сеннотани в префектуре Тояма), возможно Норвегии (Скаланд на о-ве Сенья) и др.

2. Пластовые залежи и линзы метаморфических вкрапленных руд чешуйчатого графита в глубокометаморфизованных породах преимущественно докембрийского возраста, включая их выветрелые разновидности; в составе этого типа - месторождения Украинского щита (Завальевское и др.) на Украине, Урала (Тайгинское, Мурзинское), Карелии (Ихальское) и др. регионов в России, Южной Чехии и Северной Моравии в Чехии, штатов Нью-Йорк, Пенсильвании, Алабамы и Техаса в США, острова Мадагаскар (Малагасийская республика) и др.

3. Пластовые залежи и линзы богатых руд скрытокристаллического (аморфного) графита в стратифицированных осадочных толщах различного возраста, образованные за счет контактового метаморфизма угольных пластов и битумов. Примерами этого типа являются месторождения Тунгусской провинции (Курейское, Ногинское и др.) в России, штата Сонора в Мексике, Штирии и Нижней Австрии в Австрии, Республики Корея и КНДР.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.