Рефераты. Моделі та методи розразунку внутрішніх течій з урахуванням анізотропії відкритих турбулентних потоків

p align="left">В другому розділі обгрунтована фізична модель механізму внутрішніх течій на підставі опрацювання й аналізу експериментальних даних по задачі, яка розглядається з урахуванням анізотропного стану турбулентного потоку. Результати обробки експериментів, які подані на рис. 1, представлені полями ізотах у живому перетині потоку прямолінійного русла з різнорідною шорсткістю дна. Збільшення кривизни ізотахи призводить до підвищення інтенсивності внутрішніх течій, і як наслідок до зміни розподілу внутрішніх турбулентних напруг, що підтверджує їх тісний взаємозв'язок.

Фізична модель механізму внутрішніх течій з урахуванням анізотропної природи турбулентності дозволяє розробити математичну модель цих течій за загальноприйнятою схемою досліджень, яка запропонована І.А. Шеренковим та В.Я. Савенко. Такий підхід чітко обгрунтовується методами кінематики твердого тіла, що одночасно бере участь у двох рухах: поступальному та обертальному.

Якщо розглядати течії без архімедових сил, то можна прийти до висновку, що внутрішні течії виникають внаслідок процесів, які обумовлені трьома взаємопов'язаними причинами: перша - вторинні течії формуються під дією відцентрових сил інерції; друга - (за В. Роді), за рахунок нерівності компонент нормальних турбулентних напруг; третя (за Н. А. Картвелішвілі) - за рахунок нерівномірності розподілу дотичних напруг.

Для аналізу турбулентного потоку, зокрема його тривимірних ефектів, за вихідні прийняті диференціальні рівняння осередненого турбулентного руху і нерозривності. Особливістю цих рівнянь є наявність тензора напруг Рейнольдса, за допомогою яких можна описати механізм внутрішніх течій.

При розробці тривимірної моделі механізму внутрішніх течій локальну швидкість представляємо у загальноприйнятому вигляді, як суму осередненої на вертикалі та швидкості внутрішніх течій :

(1)

Нерівномірність розподілу швидкостей по вертикалі враховується за допомогою коефіцієнта та степеневого закону розподілу швидкостей по вертикалі (як найбільш відповідного до реальних умов):

(2)

На підставі аналізу результатів досліджень І.А. Шеренкова та В.Я. Савенка локальні швидкості на вертикалі представляються у вигляді співвідношень:

(3)

Посилаючись на наведені вище положення, що до процесу утворення внутрішніх течій, в модельному рівнянні поряд з турбулентними напругами ураховуються дотичні напруги , які обумовлені наявністю внутрішніх течій. Дотримуючись умов спрощення, отримана наступна модельна форма рівнянь:

(4)

(5)

(6)

(7)

Для складової швидкості внутрішніх течій отримане рівняння у вигляді:

(8)

Для врахування деформацій вільної поверхні потоку, які зумовлені наявністю значних градієнтів тиску в області розв'язування задачі, запропоновано рівняння:

(9)

де - глибина потоку на вертикалі.

Завершальний етап розрахунку швидкісного поля потребує перевірки виконання рівняння нерозривності. В разі його невиконання запропоновано ввести потенційну поправку , яка обумовлюється градієнтом повздовжньої швидкості . Малий порядок цієї поправки дозволяє не включати її до рівняння нерозривності, а використовувати лише для корекції швидкісного поля, яка врахована в алгоритмі розв'язування задачі, а математичний опис її має вигляд:

(10)

При чисельному моделюванні тривимірних ефектів у товщі турбулентного потоку для замикання математичного опису механізму внутрішніх течій застосовується модифікована модель, яка складається з рівнянь переносу кінетичної енергії та швидкості її дисипації, що отримані з рівнянь гідродинаміки і мають свою фізичну інтерпретацію:

(11)

(12)

Генерація кінетичної енергії визначається за формулою:

(13)

Модифікована модель цілком оптимальна для внутрішніх течій за анізотропного коефіцієнту турбулентної в'язкості , при її спільному використані з алгебраїчною моделлю переносу напруг Рейнольдса. Застосування алгебраїчних виразів переносу турбулентних напруг більш широко розкривають природу турбулентності та враховують її анізотропний стан. Ці вирази отримані з повних рівнянь переносу турбулентних напруг шляхом введення модельних співвідношень та їх спрощення. Алгебраїчні вирази можуть бути представлені у вигляді:

(14)

(15)

де - член генерації турбулентності, який характеризує перенос енергії від осередненої течії до пульсуючої;

або - індекси, які визначають напрямок декартової системи координат;

- символ Кронекера ( при та при ).

Коефіцієнт турбулентної в'язкості визначається по співвідношенню Колмогорова - Прандтля, яке використовується в двопараметричних моделях:

(16)

За показник, що характеризує анізотропний стан турбулентного потоку використовується тензор анізотропії , або девіатор тензора напруг, який дорівнює нулю для ізотропного поля та визначається співвідношенням:

(17)

Для забезпечення адекватного опису характеристик осередненої течії і турбулентності у тривимірному потоці, при наявності внутрішніх течій, залежність для величини визначається як функція відношення генерації кінетичної енергії до швидкості дисипації :

(18)

При реалізації розглядуваної задачі суттєвим є питання узгодженості розподілу швидкостей і поля гідродинамічного тиску, для опису якого запропоновано рівняння у вигляді рівняння Пуассона:

(19)

Запропоновані математичні моделі механізму внутрішніх течій дозволяють у новому аспекті розв'язувати задачу розрахунку цих течій.

У третьому розділі наведено методи реалізації запропонованих математичних моделей, представлених у фізичних координатах. Область розв'язування являє собою тривимірний простір зі змінними границями. Для універсалізації та спрощення алгоритму пропонується перейти до безрозмірних координат у області зі сталими границями.

У випадку безнапірного потоку довжиною ( ) із поперечним перетином довільної форми система координат заміняється “новою” системою координат - при цьому:

(20)

де - відмітки, відповідно, дна та берега русла від початку декартової системи координат.

Такий підхід дозволяє отримати рівномірну сітку в обчислювальній області, хоча вузли сітки у фізичному просторі можуть бути розташовані нерівномірно. При переході до “нових” координат у диференціальні рівняння вводяться матричні коефіцієнти перетворення.

Для реалізації дискретних аналогів рівнянь внутрішніх течій (4) - (6), (8), (9) та моделі турбулентності (11) - (12) використовується скінченнорізницевий метод типу предиктор - коректор по явній схемі Мак-Кормака, з розщепленням диференціальних рівнянь на одновимірні за просторовими координатами та часом. Використання явної модифікованої схеми Мак-Кормака, типу предиктор - коректор, обгрунтовується її гнучкістю, що дозволяє нестаціонарну тривимірну задачу звести до послідовного розв'язування одномірних маршових задач і створювати різноманітні модифікації в умовах накладення нерівномірної сітки на примежові зони потоку та великих чисел Рейнольдса; стійкістю при виконанні умови Куранта - Фрідріха - Леві; узгодженістю при співпаданні суми кроків для кожного скінченнорізницевого оператора та отриманні другого порядку точності результатів за першого порядку апроксимації вихідних операторів. У безнапірних змінних скорочений запис схеми має вигляд:

(21)

де

Для раціонального використання явної схеми Мак-Кормака за великих чисел Рейнольдса і для врахування впливу граничних умов на основний турбулентний потік, розв'язування ведеться за схемою у вигляді послідовності, яка задовольняє перерахованим критеріям:

(22)

де .

Умови стійкості для схеми Мак-Кормака представляються у вигляді:

- при

(23)

(24)

(25)

- при та

(26)

де - коефіцієнт запасу, ;

- припустимий крок у часі, згідно критерію Куранта - Фрідріха - Леві;

- мінімальне сіткове число Рейнольдса.

Чисельна реалізація алгебраїчних співвідношень для турбулентних напруг і рівнянь для гідродинамічного тиску і потенційної поправки проводиться методом послідовної верхньої релаксації на основі методу Гаусса - Зейделя. Корекція невідомих здійснюється за формулою:

(27)

де - номер ітерації;

, , - відповідно значення невідомих величин: останні, які обчислені по методі Гаусса - Зейделя, попередні та “підправлені”;

- параметр релаксації.

Критерій збіжності ітераційного методу використовується у вигляді:

(28)

де - характерний масштаб значення величини , або .

Для отримання однозначного розв'язування конкретної задачі окрім замкнутої системи вихідних рівнянь необхідно додавати граничні і початкові умови. В роботі обґрунтовані і сформульовані граничні умови на всіх границях розрахункової області, а також початкові умови для нестаціонарної задачі.

На основі чисельних методів реалізації дискретних аналогів розроблених моделей і рівнянь складений алгоритм рішення тривимірної задачі розвитку внутрішніх течій в анізотропному турбулентному потоці.

У четвертому розділі наводиться співставлення розрахункових та експериментальних даних, результати чисельного експерименту та практичні аспекти застосування запропонованих моделей та методів реалізації. Обґрунтовано метод та наведено методику експериментальних досліджень. Для обробки результатів експериментів по дослідженню утворення і розвитку внутрішніх течій в зоні штучного стиснення потоку розроблено пакет прикладних програм для побудови полів ізотах повздовжньої та поперечної складових осереднених швидкостей; поперечної та вертикальної складових внутрішніх течій; ізолінії функції току внутрішніх течій.

Проведений аналіз отриманих результатів експериментальних досліджень дозволяє зробити висновки: основний вторинний потік завжди напрямлений із зони з найвищими швидкостями у зони з найбільшим гальмуванням (до дна); при накладенні двох видів циркуляції за знаками вторинні потоки впливають як вирівнюючий фактор на розподіл швидкостей; розташування максимальних швидкостей нижче поверхні рівня води є наслідком впливу внутрішніх течій; максимальні значення швидкостей внутрішніх течій складають близько 15% від повздовжніх.

Складність проведення фізичних експериментів внаслідок відсутності відповідної бази та фінансових ресурсів видвигають перед науковцями розробки ефективних методів математичного моделювання. Для втілення цього типу моделювання необхідно досить чітко зробити калібровку моделей за допомогою розв'язування тестових задач та співставлення результатів розрахунків за моделями з наявними експериментальними даними. Застосування запропонованих математичних моделей дає можливість використовувати їх для дрібномасштабних моделей, які завжди мають місце за фізичного моделювання. Це обгрунтовується значними обсягами досліджень з цього питання закордоном, в країнах СНД та нашій країні. Тому були проведені чисельні розрахунки гідродинамічної структури експериментального потоку і були співставленні з результатами експериментів, що свідчить про досить добрий їх збіг. На рис. 3 наведено зміну відносної похибки розрахункових та експериментальних швидкостей . Наведені результати свідчать про адекватність розроблених математичних моделей та експериментальних даних.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.