Рефераты. Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей

p align="left">Отыскав таким образом ординату нейтральной линии тока 4*, по известным методикам можно рассчитать предельный безводный (для нижней части пласта) и предельный безгазовый (для верхней части пласта) дебеты, а затем предельную депрессию. Наименьший дебит из расчетных принимается как предельный безводный и безгазовый дебит скважины.

В соответствии с формулой (2.1) для удельного расхода

q0=Q/hft

по верхней и нижней частям пласта (см.рис.2.7) можно записать следующие соотношения [3,12,13]:

q01=?h1??1

q02= (2.21)

где

Ђ1=;

Ђ2=;

h1=d;

h2=h-d

p01 = ;

p02 =;

?*=?=

С учетом (2.22) формулы (2.21) принимают следующий вид:

q01=?h?p1;

q02= eh?p2. (2.23)

Безразмерные предельные дебеты q01(p1,Ђ1) и q02(p2,Ђ2) определяются по таблице (см.Прил. 1). Чтобы дебет был одновременно безводным и безгазовым, необходимо выбрать наименьший расход, т.е. принять q0=min {q01,q02}. Тогда предельный расход нефти через скважину будет

Q = q0(b-a) = q0(?-?)h . (2.24)

Очевидно, этот дебет в общем случае является предельным либо для конуса воды (и меньше предельного для конуса газа), либо для конуса газа (и меньше предельного для конуса воды).

Выражения в правых частях формул (2.23)

q1=q1(?,?,p0) =q( ). , (2.25)

q2=q2(?,?,p0)2 = ()2=q(, ()2 (2.26)

представляют собой соответственно безразмерные предельные безгазовые и безводные плотности расходов. С учетом (2.25) и (2.26) формулы (2.23) принимают вид

q01 = q1?p1?h

q02 = q2?p2?h . (2.27)

Для каждой пары значений а и В и соответствующих им значений ординат нейтральной линии тока (см.табл.2.1) по формулам (2.22) подсчитаны величины относительных вскрытий Ђ1,Ђ2 в зависимости от параметров а и В и значения параметров p01 и р02. Затем, с помощью таблицы (см.Прил.1) для предельных дебитов определялись q1(?,?,p0) и q2(?,?,p0), а затем по формулам (2.25), (2.26) рассчитывались плотности расходов q1 и q2. Результаты расчетов сведены в таблицу (Прил.З), которая охватывает все практически интересные значения параметров ?, ?, и р0[86]. В силу симметрии каждая строка таблицы дает одновременно значения безразмерных предельных плотностей расходов q1 и q2 для соответствующих значений ? и ?, т.е. qI,2(?,?)=q2,1(l-?,l-?). По данным таблицы нетрудно построить сетку кривых зависимостей q1,2=q1,2(p0) для фиксированных значений пары параметров а и В, т.е. для заданного интервала вскрытия (b-а), см.рис.2,7.

При конкретных расчетах предельных безводных и безгазовых дебитов поступают следующим образом. По известным параметрам а, 6 и р0 из таблицы или графиков находят плотности расходов qi и q2, затем по формулам (2.27) подсчитывают удельные расходы q01 и q02, из которых выбирают наименьшее значение q0=min{q01;q02}, и по формуле (2.24) подсчитывают искомый предельный дебит. Покажем применение метода на конкретных примерах.

Пример 2. Имеется подгазовая нефтяная залежь, подстилающаяся подошвенной водой. Исходные параметры: R0=200m; п=25м; Ар1=870кг/м3; Ар2=200кг/м3 (в пластовых условиях); ц„=2,5мПас; Кг=0,5 1,0210-12м2; *=12. Требуется определить одновременно безводный и безгазовый дебит при безразмерных параметрах вскрытия: ?=0,2; ?=0,7 и ?=0,2; ?=0,5.

1. Определяем значение

p0=R0/? *h=0,66.

2. Из таблицы (см.Прил.З) находим плотности q1=0,145 и q2=0,290 при ?=0,2 и ?=0,7.

3. По формулам (2.27) находим удельные расходы:

q01=0,145-870?h=126,15?h;

q02=0,290-200?h=58?h;

4. Так как q02<q01, го выбираем q02. По формуле (2.24) определяем Q=19,4м3/сут.

5. Из таблицы (см.Прил.З) при ?=0,2 и ? =0,5 находим плотности q1=0,165 q2=l,0.

6. Удельные расходы составят соответственно:

q0l=0,165 -870?h=143,55?h;

q02=l,0-200?h=200?h;

7. В этом случае q01<q02.Выбираем q01. Тогда расход в пластовых условиях, подсчитанный по формуле (2.24), составит Q29,2м3/сут.

Как видим, в этом случае предельный дебит оказался в 1,5 раза больше предыдущего. Таким образом, наибольший предельный дебит зависит от положения интервала вскрытия.

Пример 3. Исходные параметры принимаются для примера 1, интервал вскрытия, в котором определяемый ординатами b=14,84м и а=2,34м, соответствует безразмерным ординатам:

?=b/h=14,84/25?0,60

и

?=a/h=2,34/25?0,l.

1.По таблице (см.Прил.З) для параметров ??0,1, 0,60 и р0=200/25=8 при ?*=1 определяем плотности q1?0,02 и q2?0,19.

2. По формулам (2.27) находим удельные расходы:

q01=0,02 -870?h=17,4?h;

q02=0,19-200?h=38?h.

3. Выбираем наименьшую плотность q01. По формуле (2.23) находим предельный дебит Q?5,9м3/сут. Сравнивая его значение с дебитом Q=9,87м3/сут, рассчитанным по приближенной методике (см.пример 1), видим, что последний завышает в данном конкретном примере предельный дебит в 1,66 раза.

4. Для сравнения произведем расчет предельного дебита при тех же исходных данных по методике Курбанова-Садчикова, для чего пересчитаем параметры в обозначениях авторов [8]. Получаем:

?=?p1/?p2=870/200= 4,35;

Ђ=hc/h= 12,5/25=0,5;

R=R0/?*h=200/l -25=8.

По графикам [8] находим q?0,47 и Ђr?0,095 или hr?0,095 -25?2.38м. Предельный дебит по формуле [ 8 ] составляет

Q = =1,75 10-4м3/c= 10,15м3/сут.

Завышение предельного дебита по сравнению с расчетным, учитывающим нейтральную линию тока, в данном случае составляет 1,72 раза.

Пример 4. Принимаются исходные данные, для которых построены графические зависимости размерного предельного безводного и безгазового дебита, рассчитанные потенциометрическим методом [6,3] и приведенные на рис.8д [3]: R0=1000футов?305м; h=100 футов?30,5м; ?p1= 500кг/м3; ?р2=300кг/м3; Кг=1д=1мкм2; ?н=1мПа -с и ?*=1.

Если принять интервал вскрытия 1=20 футов?6,1м, то по графику рис.8д [3] точка пересечения кривых В и b дает Qnp=750 баре-лей/сут?119м3/сут и местоположение интервала перфорации ??30 футов?9, 15м (см.рис.2.7). Следовательно,b=1+а=15,25м или в безразмерном виде ?=0,3 и ?=0,5. Параметр p0=R0/?*h=10. Определим Qпр по уточненному методу. По таблице (см.Прил.З) находим плотности расходов q1(?,?,p0)= q1(0,3;0,5;10)?0,18 и q2(?,?,p0)=q(0,3;0,5;10)?0,45. Затем по формулам (2.27) определяем удельные расходы: q01=0,18600?h=108?h и q02=0,45 *300?h=135?h. Для наименьшего удельного расхода q02 по формуле (2.24) находим Qпр?109м3/сут. В данном случае расхождение между двумя методами несущественное и составляет 8,4%.

Пример 5. За исходные примем данные в примере Курбанова-Садчикова [90]: R0=200m; h=10м; ?р1=700кг/м3; ?р2=300кг/м3; ?н=2мПас; Кr=0,5 * 1,02 * 10-12 м2; ?*=5; b-а=2м; d=3,9м (см.рис.2.7).

Из условия задачи имеем численные значения параметров ??0,3; ??0,5 и р0=4. По таблице (см.Прил.З) определяем безразмерные плотности расходов: q1?0,213 и q2?0,557. Удельные расходы составляют: q01 ?0,149?h и q02?0,167?h. Подсчитывая предельный дебит по формуле (2.24) по наименьшему удельному расходу q01, получаем Q?6,1м3/сут.

По расчетам авторов [7,8] этот дебит равен Q4,33м3/сут, т.е. отклонение составляет порядка 40%. Такое расхождение, очевидно, объясняется тем, что авторы при решении задачи делают допущение, что нейтральная линия тока проходит через середину интервала вскрытия (см.рис.2.6 и 2.7) при любом его положении, тогда как уточненная методика определяет положение нейтральной линии тока ?* в зависимости от положения интервала вскрытия ? и ?. Заметим, что в своей предпосылке при решении задачи несовершенная скважина считалась линией стоков с постоянным удельным расходом. В действительности на скважине должен быть постоянным потенциал. Физически ясно, что картины линий тока будут отличаться несущественно, а, следовательно, положения горизонтальных линий тока будут близки друг к другу [3].

Метод Курбанова-Садчикова и предлагаемый уточненный метод решения задачи конусообразования имеют следующие преимущества перед потенциометрическим и другими существующими методами: они универсальны, т.е. расчетные зависимости представлены в безразмерном виде и применимы как для однородных, так и для однородно-анизотропных пластов; графические решения даны в широком диапазоне безразмерных параметров вскрытия (?,?) и радиуса контура питания (R0) и охватывают все практически интересные случаи; технически удобны и просты, не требуют сложной вычислительной техники.

Заключение

Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или полностью подошвенными водами или оконтуриваются краевыми водами или имеет место то и другое одновременно. Рациональная разработка указанных месторождений невозможна без знания особенностей и закономерностей продвижения границ раздела газ-вода, нефть-вода и газ-нефть к несовершенным скважинам. Как показывают промышленные испытания и анализы разработки залежей с верхним газом и подошвенной водой, конусообразование является, в ряде случаев, основной причиной обводнения или загазовывания нефтяных скважин, пробуренных в литологи-чески однородных пластах. Преждевременное обводнение или загазовыва-ние скважин, незнание закономерностей и причин этого явления ведет к потерям большой доли промышленных запасов нефти и, таким образом, снижению нефтеотдачи пласта, увеличению сроков разработки и в конечном итоге к большим материальным затратам на извлечение нефти из пласта. Отсюда тщательное изучение процессов продвижения подошвенных вод и верхнего газа, сложного явления деформации поверхности раздела фаз в пористой среде (конусообразования), особенностей и закономерностей обводнения пластов и скважин, совместного притока жидкостей к забою скважины и изучение природных факторов, способствующих увеличению безводного и безгазового периодов эксплуатации и улучшению технологических условий разработки залежей с целью наибольшего извлечения нефти из пласта, одна из основных задач увеличения нефтеотдачи на современном этапе.

Список используемой литературы

1.Маскет М. Течение однородных жидкостей в пористой среде (пер. с англ.).-М.: Гостоптехиздат, 1949.

2.Чарный И.А. Подземная газогидродинамика. -М: Гостоптехиздат, 1963.

З.Телков А.П., Стклянин Ю.И. Образование конусов воды при добыче нефти и газа.-М..Недра, 1965..

5.Телков А.П. Некоторые особенности эксплуатации нефтяных залежей с подошвенной водой. -НТО.М: ВНИИОЭНГ, 1972. - 136с.

6.Курбанов A.K., Садчиков П.Б. Расчет положения интервала вскрытия в нефтяном пласте с подошвенной водой и газовой шапкой// Тр.ВНИИ, 1962.- Вып.37. - С.29-40.

7. Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений/Под ред. Ш.К.Гиматудинова. - М: Недра, 1983.

8.Телков А.П., Стклянин Ю.И. Расчет предельных безводных и безгазовых дебитов в подгазовых нефтяных залежах с подошвенной водой// Тр.МИНГиГП,1963. -Вып.42.

9.Стклянин Ю.И., Телков А.П. Расчет предельных безводных дебитов в однородно-анизотропных пластах с осевой симметрией // Изв. АН СССР, 1961-№5.

10.П.Краснова Т.Л. Особенности притока нефти к несовершенным скважинам в нефтегазовых залежах с подошвенной водой// Новые технологии в разработке и эксплуатации нефтяных и газовых месторождений. Сб.науч.тр. - Тюмень: ТюмГНГУ, 1997.

11.Краснова Т.Л. Уточненная методика расчета предельных одновременно безводных и безгазовых дебитов и депрессий// Новые технологии в разработке и эксплуатации нефтяных и газовых месторождений. Сб.науч.тр. - Тюмень. ТюмГНГУ, 1997.

12.Краснова Т.Л, Телков А.П. Обоснование технологических режимов работы несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой//Нефтепромысловое дело - 1997. - № 4-5. - С.2.

13. Телков А.П., Федорцов В.К. Приток к несовершенной скважине и выбор плотности перфорации// Управление гидродинамическими процессами при разведке и эксплуатации месторождений нефти/ Тр.ЗапСибНИГНИ. - Тюмень, 1986. - С.61-68.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.